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Outline of Debate

Child as intuitive scientist > P(T|D)cP(D|T) P(T)

|

Large theory spaces

|

Stochastic search
algorithms!

Stochastic search
algorithms?!




Outline of Debate

Background (Tomer)
What good are theories?
Representing a good theory

Finding a good theory — stochastic search

Imagination and issues with stochastic search (Laura)
Response (Tomer)

Response and summary (Laura)



Structured knowledge, “theories”

\.

(Magnets, metals and non-magnetic)



Begin collecting observations




Sometimes nothing happens




Sometimes nothing happens




Sometimes objects stick




Explanation: Bag of data?
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Explanation: Theory

L L 11

Concepts: “schmagnet’, “schmetal”

Rules: l

Rule 1: imteracts(X,Y) <— schmagnet(X) A schmagnet(Y)
Rule 2: interacts(X,Y) < schmagnet(X) A schmetal(Y)
Rule 3: interacts(X,Y) < interacts(Y,X)

!

Assign “schmagnets” & “schmetals”

!

Predict observed data
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Rational inference problem

Out of all possible theories, find the one
that ‘best’ explains the observed data

P(T|D)oc P(D|T) P(T)

(Tenenbaum, Griffiths, & Kemp, 2006)
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Top level theory
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Random law generation
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Interacts(X,Y)

Interacts(Y,X)



Universal

Theory
Magnetism
Core Predicates: p(X), q(X)
Surface Predicates: interacts(X,Y)
Theory

Laws:

interacts(X,Y) <—p(X) Ap(Y)
interacts(X,Y) <—p(X)Aq(Y)
interacts(X,Y) <— interacts(Y,X)

“non-magnetic
objects”
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Probabilistic Horn Clause Grammar

Taxonomy

Core Predicates: f(X,Y), g(X,Y)
Surface Predicates: has_a(X,Y), is_a(X,Y)

Laws:

is_a(X\Y) <+—g(X)Y)

has_a(X,Y) «—f(X)Y)

has_a(X,Y) «—is_a(X,Z) Ahas_a(Z)Y)
is_a(XY) <—is_a(X,2)Ais_a(Z)Y)

— g(X,Y): “is_a”
breathes

bird /ﬁs( \
canary eagle  shark salmon
can_sing has_cllaws c:mlbite is_pink
“a shark is a fish”
“a bird can fly”

“a canary can fly”

“a salmon can breathe”
| |
| |

5
N

——e f(X,Y): “has_a”

Kinship
Core Predicates: t(X), u(X,Y), v(X,Y)
Surface Predicates: female(X), parent(X,Y)

spouse(X,Y), child(X,Y),
father(X,Y), uncle(X,Y), ...

Laws:

female(X) <+—t(X)
spouse(X,Y) «— u(X,Y)
child(X,Y) <4—v(X)Y)
child(X,Y)

<— child(X,Z) Aspouse(Z,Y)
father(X,Y) “«— —female(X) Achild(X,Y)

=  Spouse
— Parent

John = Mary Richard = Joan
| |
| | |

Margaret ~ William = Anne Thomas

—

Judith

Hamnet

“John is William’s father”
“John is Judith’s grandfather”
“Judith is Hamnet’s sister”
“Margaret is Judith’s aunt”

n

Psychology
Core Predicates: desires(X,Y)
Surface Predicates: reaches_for(X,Y), location(X,Y)

Laws:

reaches_for(X,Y) <— desires(X,Z) Alocation(Z,Y)

Agent 1

Courtesy of Elsevier, Inc. (http://www.sciencedirect.com). Used with permission.

Source: T. Ullman, N. Goodman & J. Tenenbaum. "Theory learning as stochastic search
in the language of thought." Cognitive Development 27 no. 4 (2012): 455-480.
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Higher Probability

Lower Probability

Prior (grammar)
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Higher Probability

Lower Probability

Courtesy of Elsevier, Inc. (http://www.sciencedirect.com). Used with permission.
Source: T. Ullman, N. Goodman & J. Tenenbaum. "Theory learning as stochastic search
in the language of thought." Cognitive Development 27 no. 4 (2012): 455-480.
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Higher Probability

1. Theory A
/ interacts(X,Y) «<— p(X)/\p(Y)
A interacts(X,Y) «— p(X)/\q(Y)
[ & interacts(X,Y) «— interacts(Y,X)
2. Theory B

interacts(X,Y) «— p(X)/Aq(Y)
interacts(X,Y) «— interacts(Y,X)

4. Probabilistically
_accept proposal

Lower Probability ~

3. Compare current and
proposed theories

Input Input
Higher Energy/Error
1. Current weights ; 4. New weights
Hidden Hidden
el Output Output
Lower Energy/Error e . y ’
; 2. Find gradient >

LA -
3. Move along gradient g v, v
é

Courtesy of Elsevier, Inc. (http://www.sciencedirect.com). Used with permission.

Source: T. Ullman, N. Goodman & J. Tenenbaum. "Theory learning as stochastic search
in the language of thought." Cognitive Development 27 no. 4 (2012): 455-480.
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Observed predicate: interacts(X,Y) , \

Rule 1: mteracts(X,Y) < p(X)A p(Y) l -

Metropolis-Hastings algorithm proposes alternative theories by changing
current theory (new rules, predicates, etc)

Accept or reject new theory with probability depending on score
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Rule1: mnteracts(X,Y) p(X)Ap(Y) l - ~
Rule 2 :mteracts(X,Y) < q(X) A q(Y)

Observed predicate: interacts(X,Y)

Metropolis-Hastings algorithm proposes alternative theories by changing
current theory (new rules, predicates, etc)

Accept or reject new theory with probability depending on score
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Rule 1: mnteracts(X,Y) < p(X)Ap(Y) l - ~
Rule 2 :mteracts(X,Y) < p(X)A q(Y)

Observed predicate: interacts(X,Y)

Metropolis-Hastings algorithm proposes alternative theories by changing
current theory (new rules, predicates, etc)

Accept or reject new theory with probability depending on score
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Rule 1: mteracts(X,Y) < p(X)Ap(Y) l - ~
Rule 2 :mteracts(X,Y) < p(X)A q(Y)

Rule 3 :interacts(X,Y) <« interacts(Y, X)

Observed predicate: interacts(X,Y)

Metropolis-Hastings algorithm proposes alternative theories by changing
current theory (new rules, predicates, etc)

Accept or reject new theory with probability depending on score
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A
=

Metropolis-Hastings algorithm proposes alternative theories by changing
current theory (new rules, predicates, etc)

Observed predicate: interacts(X,Y)

~y
)
~

Rule 2 :mteracts(X,Y) < p(X)A q(Y)
Rule 3 :interacts(X, Y) «<— mteracts(Y, X)

Accept or reject new theory with probability depending on score
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Rule 1: mteracts(X,Y) < p(X)Ap(Y) l - ~
Rule 2 :mteracts(X,Y) < p(X)A q(Y)

Rule 3 :interacts(X,Y) <« interacts(Y, X)

Observed predicate: interacts(X,Y)

Metropolis-Hastings algorithm proposes alternative theories by changing
current theory (new rules, predicates, etc)

Accept or reject new theory with probability depending on score
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Rule I: interacts(X.Y) — p(X)A p(Y)
Rule 1:
Rule 2: interacts(X.Y) — p(X)A q(Y)
Rule 3: interacts(X.Y) <« interacts(Y.X) Rule 1:
Rule 2:
a. b.
e Rule 1:
-10) :‘: Rule 2:
5 . \ Acquisition of
8 g - : Discarding unnecessary (s;ri::gzcsn:\e::als Rule 3.
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Interacts(X,Y) «— p(X) /~ p(Y)
Theory B

interacts(X,Y) +«— p(X) A q(Y)

interacts(X,Y) +— interacts(Y,X)
Theory C

Interacts(X,Y) +— p(X) / p(Y)

interacts(X,Y) +— p(X) / g(Y)

interacts(X,Y) «— interacts(Y,X)

Cases

Cases

;M Ineraction predicted,
| observed
o ion predicted,

N
innm|
innn|

T
il

Cases Object distribution

X 7 metal, 1 magnets, 2 other
1 1 metal, 3 magnets, 6 other
] 2 metal, 3 magnets, 5 other
3 3 metal, 3 magnets, 4 other
4 4 metal, 3 magnets, 3 other
5 5 metal, 3 magnets, 2 other

O] Theory A&

B Theory B

B Theory C
Iterations

© W
50 400 800 1200 1800

© Tomer Ullman, Noah Goodman, and Joshua Tenenbaum. License CC BY-NC-ND.
This content is excluded from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/ Open access version in DSpace@MIT.

Uliman, Goodman & Tenenbaum, 2012
Denison, Bonawitz, Gopnik and Griffiths 2013
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Theories are useful
Rich, structured theories define a rich landscape
Algorithmic solution: stochastic search in rich landscape

Application to children?

24



In Which, following an elegant
exposition of a formal model,
attendant experiments and
quantitative data, Laura proceeds
to wave her hands around ...

% /’:"Iv] i 3
Winnie-the- h book excerpt © Dutton/Penguin Books. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.

25


https://ocw.mit.edu/help/faq-fair-use/

116

the end of the Expo—wha
then let me be the end. Bu
sit down for a little rest, I 1
a dozen of Rabbit’s sma
first, then this isn't an Ex

it’s simply a Confused :
"I see what Eeyore m

1)

me
“I'm not asking anyb

telling everybody. We

or we can play ‘Here

May’ with the end o
Winnie-the-Pooh book excerpt © Dutton/Penguin Books. All rights reserved.This content is excluded from

our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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“I know why you have to
turn off your cell phone

when you get on the
airplane”

27



Because airplanes
are made of metal
and so are phones

“Because when the plane
takes off it’s too noisy to

hear. ”

28



There are innumerable logical, constitutive, causal,
and relational hypotheses consistent with the
grammar of our intuitive theories How do we rapidly
converge on ones that actually might explain the data?

Because airplanes

and phones are
both made in Ohio
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Not just toy problem. Modeling even relatively simple,
well-understood problems takes long time.

Winnie-the-Pooh film
image removed due to
copyright restrictions.

Iterations spent searching in hopeless places

Approximate Bayesian Image Interpretation using
Generative Probabilistic Graphics Programs

Vikash K. Mansinghka* 12, Tejas D. Kulkarni* ', Yura N. Perov!'??, and Joshua B. Tenenbaum!-2




Not just toy problem. Modeling even relatively simple,
well-understood problems takes long time.

Winnie-the-Pooh film
image removed due to
copyright restrictions.

Iterations spent searching in hopeless places

current

31



* We know a lot about our
problems, well before we can
solve them.

e Abstract representation of what
the solution might look like could
help guide searching the space.

There is an unpredicted
incompatibility between

airplanes and phones



“Sure to be a pole,” said
Rabbit, “because of calling it a
pole, and if it’s a pole, well, I
should think it would be
sticking in the ground,
shouldn’t you, because there’d
be nowhere else to stick it.”

Winnie-the-Pooh book excerpt © Dutton/Penguin Books. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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Form of the problem as input to algorithm should increase the
probability that it proposes useful ideas

Consider the information contained in question words

When?

L

Bl® KX ¥ N Why?

34




Models use abstract form to evaluate hypotheses (Kemp & Tenenbaum 2008)
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BUT representation of the problem could also constrain space

Courtesy of National Academy of Sciences, U.S.A. Used with permission.
Source: Kemp, C., and J. B. Tenenbaum. "The discovery of structural
form." PNAS 105 no. 21 (2008): 10687-10692. Copyright © 2008
National Academy of Sciences, U.S.A.

Learners have rich constraints far beyond question words.

Kinds of problems & criteria for solving them derive from multiple sources:
— The kinds of problems we want to solve (e.g., navigation, explanation, etc.)

— Broader epistemic ends (persuading, instructing, deceiving, etc.)

— Non-epistemic ends (impressing, soothing, entertaining, etc.)

Goals are innumerable, ways to achieve goals are limited

35



Ex potition to

116

the end of the Expo—what
then let me be the end. But

sit down for a little rest, I ha
a dozen of Rabbit’s smalvl,"
first, then this isn’t an Expo—

“I see what Eeyore 1

me—__”
“I'm not asking an
telling everybody. We
or we can play ‘Here
May’ with the end par
Winnie-the-Pooh book excerpt © Dutton/Penguin Books. All rights reserved.This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Winnie-the-Pooh book excerpt © Dutton/Penguin Books. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faqg-fair-use/.
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When we do not have an abstract representation
of what might count as a solution to a problem we
resort to very inefficient and often ineffective
searches.

— Indeed, what it might mean for us to think that a
problem is “tractable” might be to recognize that we
don’t know the answer

— but we at least have a precise enough representation
of the problem to guide the search.
T

M.




Representing what “counts” as a solution to
a problem might explain....

— Sense of “being on the right track”

— “Great idea!”, even when we know it is wrong

Can constrain proposals based on how well....
— They fit prior knowledge & data [“TRUTH”]
— They solve problems if they were true [“TRUTHINESS”]

39



Generating new ideas is not about radical concept/theory change

It is the problem of ordinary, everyday, productive thinking

Can reliably make up new — relevant — answers to any ad hoc
qguestion. Answers may be trivial and may be false, but they are...

— Genuinely new (didn’t have them until we thought of them)
— Genuinely made up (didn’t learn them from new evidence/testimony)
— Answers to the question (not non-sequiters)

Only possible if we can use the form of the question to guide search

40



What’s a good name for a new theater company?

How do they get the stripes on peppermints?

Asaccharolyticus

41



Is there any evidence that information contained only in
the abstract form of the problem can help learners
converge on solutions? (“Look Ma. No data.”)

Rachel Magid Mark Sheskin

42



Is there any evidence that information contained only in
the abstract form of the problem can help learners
converge on solutions? (“Look Ma. No data.”)

y

Two visual effects

Continuous: ball flowing up and down.
Discrete: ball appearing at the bottom,
disappearing, and then appearing at top

Two auditory effects

Continuous: low tone (225 Hz) gradually
rising in pitch to high tone (900 Hz) and back
Discrete: low tone (225 Hz) alternating with
high tone (900 Hz)

43



* Do you see the ball? It’s going low, high, low. I'm using one of
these parts to make the ball go low, high, low.

Do you see the ball? It’s going higher and lower. I'm using one of
these parts to make the ball go higher and lower.

“Which part made the ball go ?”
Half the children asked about continuous visual and discrete auditory
Half asked about discrete visual and continuous auditory

[ .
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* Do you see the ball? It’s gazzing. I’'m using one of these parts to
make the machine gazz.

* Do you see the ball? It’s blicking. I’'m using one of these parts to
make the machine blick.

“Which part made the machine ?”

Half the children asked about continuous visual and discrete auditory
Half asked about discrete visual and continuous auditory

g .

a

45



e No fact of the matter. No covariation
evidence.

y

y

Two visual stimuli

Continuous: ball flowing up and down.
Discrete: ball appearing at the bottom,
disappearing, and then appearing at top

Two auditory stimuli

Continuous: low tone (225 Hz) gradually
rising in pitch to high tone (900 Hz) and back
Discrete: low tone (225 Hz) alternating with
high tone (900 Hz)
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Experiments 1 and 2

Results
o 100
® 90 . %
£ 30 — — w Corresponding
o affordance
52 70 ——
= 2
< " 60 ———
£ € 50 -
E § 20 w Non-
S corresponding
c o 30 -
IS affordance
L © 20 -
c
5 10 -
© 0 -
X

Experiment 1 Experiment 2

Four-six year-olds.
Mean: 62 months.

N = 16/Experiment
Magid, Sheskin, & Schulz, in press, Cognitive Development



So what? We said there was no fact of the matter and no
covariation evidence.

If children don’t know the answer and there’s no way to find
out, maybe they just use cross-modal mapping to map from
the affordance to the stimuli.

We wanted to know if they were actually using the form of
the problem to constrain the solution.

If so, they should give different answers given different
problems.
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* Do vyou see (hear) the machine? It’s gazzing (flurping). I'm using
one of these parts to make the machine gazz (flurp).

* Do you see (hear) the machine. It’s blicking (daxing). I’'m using
one of these parts to make the machine blick (dax).

Showed the children the continuous visual stimuli and
asked them how to generate the auditory one,
and vice versa.

y ﬁ
aLr .
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Results

%k %

g 100 ' I
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§ ) affordance
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w ©
c
o
(T
S
S Experiment 1 Experiment 2 Experiment 3
Axis Title Four-six year-olds.

Mean: 62 months.
N = 16/Experiment
Magid, Sheskin, & Schulz, in press, Cognitive Development
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Children prefer causal processes
that preserve the dynamic form
regardless of the lower level
features and the absence of
covariation evidence (Tsividis,
Tenenbaum, & Schulz in prep)

{f
|
3

—_
[p)
1

8_

4- ..
O_

p <.001 by two-tailed 0}2 1}2 }
. . 212
binomial test. Questions correct

# Children

51



Is this just analogical reasoning?

— Funny kind of analogy. Not a mapping between a known problem and a
solution to a new problem and new solution.

— Instead a mapping between the form of the problem to the form of the
solution.

— Also the argument is that this applies to any possible goal we might have,
including cases where it is not obvious that analogical reasoning applies.

— “What’s a good name for a new theater company?”
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Rather, children seem to have data-independent criteria for
the evaluation of hypotheses -- criteria that extend beyond
simplicity or compatibility with prior knowledge.

Children can consider the extent to which a hypothesis fulfills
the abstract goals of a solution to a problem, not just the
degree to which a hypothesis fits the data.
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A mystery of human cognition:

So much time pretending and making up stories

Good stories do not have to be true, BUT

Pose problems, solve problems




“And that is really the end
of the story, and as I am
very tired after that last
sentence, I think I shall
stop there.”

Winnie-the-Pooh book excerpt © Dutton/Penguin Books. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faqg-fair-use/.

55


https://ocw.mit.edu/help/faq-fair-use/

"Run away, run away" clip from
Monty Python and the Holy Grail
removed due to copyright restrictions.
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Steve Piantadosi
Fast Proposals

"'Tis but a scratch" clip from
Monty Python and the Holy Grail
removed due to copyright restrictions.

Owen Lewis Eyal Dechter

Good Proposals Good Primitives

Ad-hoc Spaces 57



Critique: “Stochastic search does not make use of, or account
for, some abilities we know people have”

Rebuttal: You’re wrong(?)

Many hypotheses - only aware of (relatively)
good ones

Requires ability to suggest many hypotheses

Steve Piantadosi
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Stochastic search algorithms can be
parallelized (in some cases)

Run many “chains” in parallel,
not one chain for a long time

Take advantage of GPU architecture,
not CPU

~30 times faster than CPU

GPU’s are cheap and plentiful,
search scales in number of GPU’s.

Distance
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s (MIT)

{ ’?

Owen Lewi
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Current Hypothesis New example

e Or
e And (@ Square
/\ Stochastic description
Red e Circle And

N\

Triangle Size 2

61



Current Hypothesis New example

Or

L A

And

Red Circle Square /\

Triangle Size 2

Owen Lewis (MIT)

Bottom line: propose relevant hypotheses
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Operation Current Hypothesis  Example (pos/neg)  Proposed Hypothesis

c /98‘\ OR
.9 s " . e T ——

"Ej’ Add-and = _————_ ue e )!Ex
N green triangle green triangle blue  circle
o ‘/OB-R_‘_ AND

3 AND b A = e

a AR green triangle
W Pel=or  green triangle

c — OR OR

e /H

o AND blue + bl ircl
— Add-or AND ue circle
N green triangle green biue

o

E /O'R"“-h.;_‘_ OR

c Del-and + —

(<) hng  be triangle blue

C.D L green triangle

Pl:g!Josal Efficiency in Concept Learning Pr'gposal Efficiency in Theory Learning

Proposals

1000

810

600

400

200

= 0.05
=1.00

—P rand

—Prana

5

3 4
Problem Size (n___=n_ )
vals dims

Log Proposals

P, =005
P =08

——MH-Gibbs

Problem Size (Number of Objects)

Owen Lewis (MIT)
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Reminder: Templates as smart proposals

Template 1: PIX)Y) — PXZ) APELY)

Template 2: PX)Y) — PEZX)APEZY) \ e'g' TranSitiVity
Template 3: PX)Y) — PXZ) A APYZ)
Template 4. PX.Y) — PZX) APYZ) Useful when there are multiple problems:
Template 5: PX.)Y) — PX.Y)APX)
Template 6: PX)Y) — PY.X)AnP(X)

Template 7: PX)Y) +— PX)Y)APY)

Template 8:  P(X.Y) — P(Y.,X)AP(Y)
Template 9: P(X)Y) — P(X)AP(Y)
Template 10: P(X.Y) < P(Y.X)
Template 11:  P(X)Y) — PX.Y)

BUT: Discovery of templates?

Template 12:  P(X) — PX)

Template 13:  P(X) — PX.Y)AnPX)
Template 14:  P(X) — P, X) nP(X)
Template 15:  P(X) —  PX.Y)AP(Y)

Template 16: P(X)  — P(Y.X) A P(Y)
64



Exploration Compression Algorithm
(Dechter, Malmaud, Adams & Tenenbaum 2013)
Takes stochastic grammar over programs & primitives:

Generates function library

Library ‘encapsulates’ useful concepts Eyal Dechter (MIT)
LI -

Example: Boolean circuits : )’[DJ Ds

Primitives: {I, S, C,B,] )} .

Learned concepts: =] Y= [>o [NOT]

[
oo [AND]
I
Q)
. I- [E2]

Bottom line: learn and re-use good ‘chunks’

Y
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Effective

Program length search area

short

long
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Construct relevant spaces on the fly

“Good name for new romantic drama”

-,

“Give me a paper title for SRCD”
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“Good name for new romantic drama”

Mini-Grammar The Climbers
Christine of the Big Tops

MT
Cupid's Fireman\
\ ®

DP The Crown of Lie

/\ of Lies  The Coming of Amos

‘ o
Crown Clothes Make the Woma/
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“Good name for new romantic drama”

_ _ Hunchback of Monte Cristo
Endless Love settoe
_ Belle of a Lesser God

“Good name for new action movie”

o

Eagle Shooting Heroes

Tomb Raider: the Raging
God of Violence

Legend of Legend

69



Still a long way to go to model children,
meet Laura’s critique

Hard to say what is hard (early days)

People in development should (continue) to care
about search algorithms, to everyone’s benefit
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Very cool. Error-driven
proposals. But still driven by
the data. We seem to treat
the problem itself as part of
the “data”.

Also very cool. Explains how
you develop new
representational resources.
But not all learning problems
can be solved just by changing
the representational format

Might be true.
“That’s what an

expedition means. A
long line of

everybody.”
But ... not as good a

story. 71
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