
MITOCW | watch?v=cyQZP23YbCY

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at OCW.mit.edu.

LORENZO

ROSASCO:

I'm Lorenzo Rosasco. This is going to be a couple of hours plus of basic machine learning.

OK. And I want to emphasize a bit, the word, "basic." Because really I tried to just stick to the

essentials, or things that I would think of essentials to just start. Suppose that you have zero

knowledge of machine learning and you just want to start from zero. OK. So if you already had

classes in machine learning, you might find this a little bit boring or at least kind of rehearsing

things that you already know.

The idea of looking at machine learning these days is coming from at least two different

perspectives. The first one is for those of you, probably most of that are interested to develop

intelligent systems in a very broad sense. What happened in the last few years is that there's

been a kind of data-driven revolution where systems that are trained rather than programmed

start to be the key engines to solve tasks. And here, there are just some pictures that are

probably outdated, like robotics. You know, we have Siri on our phone. We hear about self-

driving cars.

In all these systems, one key engine is providing data to the system to essentially try to learn

how to solve the task. And so one idea of this class is to try to see what does it mean to learn?

And the moment that you start to use data to solve complex tasks, then there is a natural

connection with what today is called data science, which is somewhat a rapid [INAUDIBLE]

renovated version of what we used to call just statistics.

So basically, we start to have tons of data of all kinds. They are very easy to collect, and we

are starving for knowledge and trying to extract information from these data. And as it turns

out, many of the techniques that are used to develop intelligent systems are the same very

technique that you can use to try to extract relevant information patterns, data, from your data.

So what we want to do today is try to see a bit what's in the middle. What is the set of

techniques that allows you, indeed, to go from data to knowledge or to acquiring ability to

solve tasks.



Machine learning is huge these days, and there are tons of possible applications. There has

been theory developed in the last 20, 30 years that brought the field to a certain level of

maturity from a mathematical point of view. There have been tons and tons and tons of

algorithms developed. OK. So in three hours, there is no way I could give you even just a little

view of what machine learning is these days.

So what I did is pretty much this. I don't know if you've ever done this, but you used to do the

mixtape, and you try to pick the songs that you would bring with yourself on a desert island.

That's kind of the way I thought about what to put in this one [INAUDIBLE] lights that we're

going to show in a minute.

So basically, I thought, what are those three, four, five learning algorithms that you should

know, OK, if you know nothing about machine learning. And this is more or less at least one

part. Of course there are a few songs that stayed out of the compilation, but this is like one

selection. OK.

So as such, we're going to start, as I said-- whoop-- simple. And the idea is that this morning

you're going to see a few algorithms. And I picked algorithms that are relatively simple from a

computational point of view. So the math level is going to be pretty basic. OK. I think I'm going

to use some linear algebra at some point and maybe some calculus, but that's about it. So

most of the idea here is to emphasize conceptual ideas, the concepts.

And then today, afternoon, there's going to be, basically labs where you sit and you just pick

these kind of algorithms and use them, so you immediately see, what does it mean? OK. So at

the end of the day, you should have reasonable knowledge about whatever you're seeing this

morning.

So this is how the class is structured. It's divided in parts plus the lab. So the first part, what we

want to do is start from probably the simplest learning algorithm you can think of to try to

emphasize, and use that as an excuse to introduce the idea of bias-variance, trade-off, which,

to me, is probably either the, or one of the most fundamental concepts in statistics and

machine learning, which is this idea that you're going to see in a few minutes in more detail.

But it's essentially the idea that you never have enough data. OK. And the game here is not

about describing the data that you have today, as much as using the data you have today as a

basis of knowledge to describe data you're going to get tomorrow. So there is this inherent



trade-off between what you have at disposal and what would you like to predict.

And then, essentially it turns out that you have to somewhat decide how much you want to

trust the data, and how much you want to somewhat throw away, or regularize, as they say,

smooth out the information in your data, because you think that it's actually an accident. It's

just because you saw data with aspects today that are not really reflective of the phenomenon

that produced them. But it's just because I saw 10 points rather than 100.

The basic idea here is essentially the law of large numbers. When you toss a coin, you might

find out that if you toss it just 10 times, it looks like it's not a fair coin, but if you go for 100, or

1,000, you start to see that it converts to 50-50. OK. So that's kind of what's going on here. So

the idea is that you want to use some kind of induction principle that tells you how much you

can trust the data.

Moving on from this basic class of algorithms, we're going to consider so-called regularization

techniques. I use regularization in a very broad sentence. And here we're going to concentrate

on least squares essentially because A, it's simple, and it just reduces to linear algebra. And

so you don't have to know anything about convex optimization or any other kind of fancy

optimization techniques. And B, because it's relatively simple to move from linear models to

non-parametric non-linear models using kernels. OK. And kernels are a big field with a lot of

math, but you're just going to look more at the recipe to move from simple models to

complicated models.

So finally, the last part, we're going to move a bit away from pure prediction. So basically these

first two parts are about prediction, or what is called supervised learning. And here we're going

to move a bit away from prediction and we're going to ask questions more related to, you have

data, and you want to know, what are the important sectors in your data?

So the one key word here is interoperability. You want to have some form of interoperability of

the data at hand. You would like to know, not only how you can make good predictions, but

what are the important sectors. So you not only want to do good prediction, but you want to

know how you make good prediction. What is the important information to actually get good

prediction. And so, in this last part we're going to take a peek into this.

And as I said, the afternoon is basically going to be a practical session. If it's all MATLAB I

think there is some quick-- if you have never seen MATLAB before, you can play around with

just a little bit. But it's very easy and then you've got a few different proposals I think, of things



you can do. And you can pick, depending on what you already know and what you can try, you

can start from that and be more or less fancy. OK.

So it goes without saying, stop me. I mean, the more we interact, the better it is. So the first

part, as I said, the idea is to use so-called local methods as an excuse to understand it by

experience. OK. So we're going to introduce the simplest algorithm you can think of, and we're

going to use it to understand a much deeper concept.

So first of all, let's just put down our setup. The idea is that we are-- so how many of you had a

machine learning class before? All right. So, you won't be too bored. The idea is we want to do

supervised learning. So in supervised learning there is an input and an output. And these

inputs and outputs are somewhat related. And I'll be more precise in a minute. But the idea is

that you want to learn this input-output relationship. And all you have at disposal are sets of

inputs and outputs. OK.

So x here is an input, and y is the output. f is a functional relation between the input and the

output. All you have in this puzzle are these couples, OK. So I give an input, and then what's

the corresponding output? I give another input and I know what's the corresponding output.

But I don't give you all of them. You just have n, OK. n is the number of points, and you call

this a training set, because it will be the basis of knowledge in which you can try to train a

machine to estimate this functional relationship. OK.

And the key point here is that, on the one hand, you want to describe these data. So you want

to get a functional relationship that works well that, if you get the next one to give you an f(x1),

which is close to y1 and so on. And f(x2), which is close to y2. But more importantly, you want

an f, that given a new point that was not here, will give you an output, which is a good estimate

of the true output to correspond to that input. OK. This is the most important thing of the setup.

OK. The ideal, so-called generalization, if you want prediction. If you want to really do

inference. You don't want to do descriptive statistics. You really want to do inferential statistics.

So this is just very, very simple example, but just to start to have something in mind. Suppose

that you have-- well, it's just like a toy version of the face recognition system we have on our

phones. You know that when you take a picture, you start--

AUDIENCE: Sorry.

LORENZO They really weren't talking. You have something like this. You have a little square appearing



ROSASCO: around a face sometimes. It means that basically the system is actually going inside the image

and recognizing faces. OK. So the idea is a bit more complicated than this. But a toy version of

this algorithm is, you have an image like this. OK. The image you think of as a matrix of

numbers. Now this is color, but imagine it's black and white, OK.

Then it would just contain a number, which is the pixel value with the light intensity of that

pixel. And you just have this array. And then if you want you can brutalize it with and just unroll

the matrix into a long vector. OK. That gives one vector. So p here would be what? The

number of? Just the number of pixels. OK. So I take this image and I unroll it. I take another

image and I unroll it. And I take images. And you see, some images here do contain faces.

Some of the images do not contain faces. OK. And I here use color to code them.

And now what I have is that images are my inputs, OK, are the x's. So here-- full disclosure, I

never use the little arrow above letters to denote vectors. So hopefully it will be clear from the

context. When it's really useful I use upper or lower indices. Anyway. So this is the data matrix.

Rows are inputs and columns are so-called features or variables, are the entries of each

vector. OK. And I have n rows and p columns.

Associated to this, I have my output vector. And what is the output vector? Well in this case,

it's just a simple binary vector. And the idea here is, if there is a face, I put 1. If there is not a

face, I put minus 1. OK. So this is the way I turn, like an abstract question, recognize faces in

images, into some data structure that in a minute we're going to elaborate to try to actually

answer the question, whether there is a face in an image or not. OK.

So this first step, it's kind of obvious in this case, but it's actually a tricky step. OK. It's the part

that I'm not going to give you any hint about. It's kind of an art. You have data and you have--

at the very beginning you have to turn them into some kind of manageable data structure. OK.

Then you can elaborate in multiple ways. But the very first step is you deciding-- for example,

here we decided to unroll all these numbers into vectors. This sounds like a good idea or a

bad idea? One thing that you're doing is that the pixel here and the pixel here are probably

related. And in this case there is some structure in the image. And so when you take this pixel

136, and you unroll it, it comes here. So they're not close. OK.

Now here it turns out that if you think about it-- you'll see a minute. For those of you who

remember, if you just took Euclidean distance, you take product of numbers and you sum

them up. That's invariant to the position of the individual pixels. So that's OK. OK. But yet



again, there is this intuition that, well, maybe here I'm losing too much geometric information

about the context of the image.

And indeed, while this kind of works in practice, but if you want to get better results you have

to do the fancy stuff that Andrei was talking about today, looking locally and try to look at

collection, try to keep more geometric information. OK. So I'm not going to talk about that kind

of stuff. This up to date, a lot of engineering, and some good way to learn it. But we're going to

try to just stick to simple representations. OK. So how do you build representation is now going

to be part of what I'm going to talk about.

So imagine that either and you stick to this super-simple representation or some friends of

yours come in and put the box here in the middle, where you put this array of numbers and

you extract another vector much fancier than this that contains some better representation of

an image. OK. But then at the end of the day, my job starts when you give me a vector

representation that I can trust. And I can basically say that if two vectors seem similar, they

should have the same label. And that's the basic idea. OK. All right.

So a little game here is, OK, imagine that these are just the two-pixel version of the images I

showed you before. You have some boxes, some circles. And then I give you this one triangle.

It's very original. Andrei showed you this yesterday. And the question is, what's the color of

that? OK. Unless you haven't slept a minute, you're going to say it's orange. But the question

is, why do you think it's orange?

AUDIENCE: [INAUDIBLE]

LORENZO

ROSASCO:

Say it again?

AUDIENCE: It's surrounded by oranges.

LORENZO

ROSASCO:

It's surrounded by oranges. OK. And she said, it's close to oranges. So it turns out that this is

actually the simplest algorithm you can think of. OK. You check who you have close to you,

and if it's orange, you say orange. And if it's blue, you say blue. OK.

But we already made an assumption here, which we ask in the question, which is the nearby

things. So we are basically saying that our of vectoral representation is such that, if two things

are close-- so I do have a distance, and if two things are close, then they might have the same



semantic content. OK. Which might be true or not.

For example, if you take this thing I showed you here, we cannot just draw it, right? We cannot

just take 200 times 200 vectors and just look at them and say, yeah, you know, a visual

inspection. You have to believe that this distance will be fine. And so the discussion that we

just had about what is a good representation is going to kick in. OK.

But the assumption you make-- in this case visually it's very easy, it's low dimension-- is that

nearby things have similar labels. One thing that I forgot to tell you in the previous slides, but

it's key, is exactly this observation that in machine learning we typically move away from

situations like this one, where you can do visual inspection and you have low dimensionality, to

kind of a situation like the one I just showed you a minute before, where you have images. And

if you have to think of each of these circles as an image, you want to be able to draw it,

because it's going to be several hundred typically, or tens dimensional vector. OK.

So the game is kind of different. Can we still do this kind of stuff? Can we just say that closed

things should have the same semantic content? That's another question we're going to try to

answer. OK. But I just want to do a bit of inception. This is a big deal, OK, going from low

dimension to very high dimensions. All right.

But let's stick for a minute to the idea that nearby things should have the same label, and just

write the one line, write down the algorithm. It's the kind of case where it's harder to write it

down than to code it up or just explain what it is. It's super simple. What you do is, you have

data points, Xi. So Xi is the training set, the input data in the training set. X-bar is what I call X-

new before. It's a new point.

What you do is that you search. This just says, look for the index of the closest point. That's

what you did before. OK. So here, I-prime is the index of the point Xi closest to X-bar. Once

you find it, go in your dataset and find the label of that point. And then assign that label to the

new point. Does that makes sense? Everybody's happy? Not super-complicated. Fair enough.

How does it work? So let me see if I can do this. This is extremely fancy code. Let's see. All

right. So what did I do? Let me do it a bit smaller. So this is just simple two-dimensional

datasets. I take 40 points. The dataset looks like this. The dataset is the one on the left. OK.

And what I do, I take 40 points. And to make it a bit more complex, I flip some of the labels.

OK. So you basically say that the two datasets-- this is called the two moons dataset, or

something like this. And what I did is that some of the labels in this sea, I changed color. I



changed the label. OK. So I made the problem a bit harder.

And here is what fortunately you don't have in practice. OK. Here we're cheating. We're doing

just the simulations. We're looking at the future. We assume that because we can generate

this data, we can look at the future and check how we're going to do in future data. So you can

think of this as a future data that typically you don't have. So here you're a normal human

being. Here you're playing god and looking at the future. OK. Because we just want to do a

little simulation.

So based on that, we can just go here and put 1, train, and then test and plot. So what you

see here is the so-called decision boundary. OK. What I did is exactly that one line of code you

saw before. OK. And what I did is, in this case I can draw it, because it's low dimensional. And

basically what I do is that I just put in the regions where I think I should put orange, and the

region where it think I should put blue. OK.

And here you can kind of see what's going on. These are actually very good on the data,

right? How many mistakes do you make on the new dataset? Sorry, on the training set? Zero.

It's perfect. OK. Is that a good idea? Well, when you look at it here, it doesn't look that good.

OK. There is this whole region of points, for example, that are going to be predicted to be

orange, but they're actually blue. Of course if you want to have zero errors in the training set,

there's nothing else you can do, right? Because you see, you have this orange point here. You

have these two orange points here. And you want to go and follow them. So there's nothing

you can do. So this is the first observation.

The second observation is, the curve, if you look close enough, it's piecewise linear. It's like a

sequence of linear pieces stuck together. If we just try to do a little game and generate some

new data-- OK, so imagine again, I'm playing god now. I generate the new dataset that it

should look like. So take another peek at this. OK. Oop.

So now I generate them. I plot them. I train. And now let's test. OK. If you remember the

decision curves you've seen before, what do you notice here?

AUDIENCE: they're different

LORENZO

ROSASCO:

They're very different. OK. For example, the one before, if you remember, we noticed it was

going all the way down here to follow those couple of points. But here you don't have those

couple of points. OK. So now, is that a good thing or a bad thing? Well the point here is that



because you have so few points, the moment you start to just feed the data, this will happen.

OK. You have something that changes all the time. It's very unstable. That's a key word, OK.

You have something that you change the data just a little bit, and it changes completely. That

sounds like a bad idea. OK.

If I want to make a prediction, if I keep on getting slightly different data and I change my mind

completely, that's probably not a good way to make a prediction about anything. OK. And this

is happening all the time here. And it's exactly because our algorithm is in some sense is

greedy. You just try to get perfect performance on the training set without worrying much

about the future. Let's do this just once more.

OK. And we keep on going. It's going to change all the time, all the time. Of course-- I don't

know how much I can push this because it's not super-duper fast. But let's try. Let's say 18 by

30. So what I did now is just that I augmented the number of points in my training set. It was

20 or 30, I don't remember. Now it make it 100. So now you should see-- OK. So this is one

solution. We want to play the same game. We just want to generate other datasets of the

same. So maybe now it might be that I took them all. I don't remember how many there are.

No, I didn't take them all.

So, what do you see now? We are doing exactly the same thing. OK. And is this something

that you can absolutely not to do in practice, because you cannot just generate datasets. But

here what you see is that I just augmented the number of training set points. And what you

see is now the solution does change, but not as much. OK. And you can kind of start to see

that there is something going on a bit like this here. OK. So this one actually looks pretty bad.

Let's try to do it once more.

OK. So again, it does change a lot, but not as much as before. And you roughly see that this

guy says that, here it should be orange and here should be blue. OK. So that's kind of what

you expect. The more points you get, the better your solution would get. And if I put hear all

the possible points, what you will start to see is that the closest point to any point here will be a

blue point. OK. So it will be perfect.

So if I ask you if this is a good algorithm or not, what would you say?

AUDIENCE: It's overfitting the data.

LORENZO It's kind of a overfitting the data. But it is not always overfitting the data. If the data are good,



ROSASCO: it's a good idea to fit them. OK. But in some sense, this algorithm doesn't have a way to

prevent itself to fall in love with the data when there are very few. And if you have very few

data points, you start to just wiggle around, become extremely unstable, change your mind all

the time. If the data are enough, it stabilizes, and in some senses, this setting, we're fitting the

data, or as she's saying, overfitting the data. It's actually not a bad thing. OK. So this is what's

going on here.

AUDIENCE: What do you mean by overfitting?

LORENZO

ROSASCO:

Fitting a bit too much. So if you look here. So here, if you look what you're doing here, you're

always fitting the data OK. But here you're doing nothing else. And so if you have few data

points, fitting the data is fine. Sorry, if you have many data points, fitting the data is just fine. If

you have few data points, by fitting them you, in some sense, overfit in the sense that when

you look at new data points, you have done a bit too much. OK. What you saw before, that you

get something that is very good, because it perfectly fits that, but it's overfitting with respect to

the future. Whereas here, the fitting on the left-hand side kind of reflects, not too badly the

fitting on the right-hand side. OK.

So the idea of overfitting and stability that came out in this discussion are key. OK. If you want

everything we're going to do in the next three hours, understand how you can prevent

overfitting and build a good way to stabilize your algorithms. OK. So let's go back here. This is

going to be quick, because if I ask you, what is this? What would you say?

AUDIENCE: [INAUDIBLE]

[LAUGHING]

LORENZO

ROSASCO:

So the idea is that, when you have a situation like this, you're still pretty much able to say

what's the right answer. And what you're going to do is that you're going to move away from

just saying, what's the closest point, and you just look at a few more points. You just don't look

at one. OK. You look at, how many? boh? "boh" is very useful Italian word. It means, I don't

know.

So these algorithm-- it's called the k nearest neighbor algorithm, it's probably the second

simplest algorithm you can think of. It's kind of the same as before. The notation here is a bit

boring, but it's basically saying, take the points. Give them new points. Check the distance with



everybody. Sort it and take the first k. OK. If it's a classification problem, it's probably a good

idea to take an odd number for k, so that you can then just have voting. And basically

everybody votes. Each vote counts one. And somebody says blue, somebody says orange,

and you make a decision. OK. Fair enough.

Well how does this work? You can kind of imagine. So what we have to do-- so for example

here we have this guy. OK. Now let's just put k-- well, let's make this a bit smaller. So we do

40. Generate, plot, train. [INAUDIBLE] test. Plot. OK. Well we got a bit lucky, OK. This is

actually a good dataset, because in some sense there are no, what you might call outliers.

There are no orange points that really go and sit in the blue.

So I just want to show you a bit about the dramatic effect of this. So I'm going to just try to redo

this one so that we get the more-- yeah, this should do. OK. So this is nearest neighbor. This

is the solution you get. It's not too horrible. But, for example, you see that it starts following this

guy. OK.

Now, what you can do is that you can just go in and say, four. Well, four's a bad idea. Five.

You'd retrain them the same. And all of a sudden it just ignores this guy. Because the moment

that you put more in, well, you just realize that he's surrounded by blue guys, so it's probably

just, his vote just counts one against four. OK. And you can keep on going.

And the idea here is that the more you make this big, the more your solution is going to be,

what? Well you say, it's going to be good, but it's actually not true. Because if you start to put k

too big, at some point all you're doing is counting how many points you have in class one,

counting how many points you have in class two, and always say the same thing. OK. So I'm

going to put here, 20.

What you start to see is that you start to obtain a decision boundary, which is simpler, and

simpler and simpler. OK. It looks kind of linear here. What you will see is that, suppose that

now I regenerate the data. And you remember how much it changed before when I was using

nearest neighbor with just k equal to 1.

So of course here, you know, it's probabilistic. OK. So of course I'm going to get a dataset like

the one I just showed you minutes ago, and I had it as fast as possible. Because if I pick 10,

one is going to look like that and nine are going to look like this. OK. And when they look like

this, you see, they kind of start to have this kind of line, like a decision boundary with some

twists. But it's very simple. OK.



And if at some point, if I put k big enough-- that is, the number of all points, it won't change any

more. OK. It will just be essentially dividing the sets in two equal parts. So does that makes

sense? So would it make sense to vote to make different votes? Essentially, the idea is, if the

point is closest, his vote should count more than if a point is more far away? Yes, absolutely.

Let's say here we're making the simplest thing in the world, the second simplest thing in the

world, the third simplest thing in the world. It is doing that. OK.

And you can see that you can go pretty far with this. I mean, it's simple, but these are actually

algorithms that are used sometimes. And what you do is that, if you just look at this-- again,

these I don't want to explain too much. If you've seen it before, it's simple. Otherwise it doesn't

really matter.

But the basic idea here is that each vote is going to be between 0-- so, you see here I put the

distance between the new point and all the other points on top of an exponential. So the

number I get is not 1, but it is between 0 and 1. If the two points are close, and the limits

supposedly are the same, it becomes a 0, and it counts exactly one. If they're very far away,

these would be, say, infinity and then we'd be close to 0. So the closest you are, the more you

count.

If you want, you can read it like this. You're sitting on a new point, and you put a zooming

window. Yeah, like a zooming window of a certain size. And you basically check that

everything which is inside this window will be closed. And the more you go farther away-- so

the window is like this. And you deform the space so that basically what you say is, things that

are far away, they're going to count less.

And if I move sigma here, I'm somewhat making my visual field, if you want, larger or smaller,

around this one new point. It's just a physical interpretation of what this is doing. There are 15

other ways of looking at what the Gaussian is doing. Voting, changing the weight of the vote is

another one. OK.

Why the Gaussian here? Well, because. Just because. You can use many, many others. You

can use, for example, a hat window. And this is part of your prior knowledge, how much you

want to weight. If you are in this kind of low dimensional situation, you might have good ways

to just look inside the data and decide almost like doing by a visual inspection. Otherwise you

have to trust some more broad principles. And it's again back to the problem of learning the

representation and deciding how to measure distance, which are two phases of the same



representation and deciding how to measure distance, which are two phases of the same

story. OK.

And the other thing you see is that, if you start to do these games, you might actually add

more parameters. OK. Because we start from nearest neighbor, which is completely

parameter-free, but it was very unstable. We added k. We allow ourselves to go from simple to

complex, from stability to overfitting. But we introduced a new parameter.

And so that's not an algorithm any more. It's a half algorithm. A true algorithm is a parameter-

free algorithm where I tell you how you choose everything. OK. So if they just give you

something, say, yeah, there's k, well, how do you choose it? OK. It's not something you can

use. And here I'm adding sigma. And again, you have to decide how you use it. OK. And so

that's what we want to ask in a minute.

So before doing that, just a side remark is-- we've been looking at vector data. OK. And we

were basically measuring distance through just the Euclidean norm, OK, just the usual one, or

this version like the Gaussian kernel that somewhat amplifies distances. What if you have

strings, for example, or graphs? OK. Your data turns out to be strings and you want to

compare them? Say even if they're binary strings, there's no linear structure. You cannot just

sum them up. the Euclidean distance doesn't really make a lot of sense.

But what you can do is that as long as you can define a distance-- and say this one would be

the simplest one, just the Hamming distance. You just check entries, and if they're the same,

you count one. If they're different, you count zero. OK. The moment you can define a distance

of your data, then you can use this kind of technique. So this technique is pretty flexible in that

sense, that whenever you can give-- you don't need a vectoral representation, you just need a

way to measure, say, similarity or distances between things, and then you can use this

method. OK. So here I just mentioned this, and that's what most of these classes are going to

be, about vector data.

But this is one point where, the moment you have k-- you can think of this case sometimes as

a similarity. OK. Similarity is kind of concept that is dual to distances. So if the similarity is big,

it's good. The distance small is good. OK. And so here, if you have a way to build the k or a

distance, then you're good to go.

And we're not going to really talk about it, but there's a whole industry about how you build this

kind of stuff. So we give restraints. Maybe I want to say that I should not only look at the entry



of a string, but also the nearby entry when I make the score for that specific. So maybe I

shifted a value of the string a little bit. It's not right here. It's in the next position over, so that

should come to bits. So I want to do a soft version of this. OK. Or maybe I have graphs, and I

want to compare graphs. And I want to say that if two graphs are close, then I want them to

have the same label. OK. How do you do that?

The next big question is-- we introduced three parameters. They look really nice, because

they kind of allowed us to get more flexible solutions to the problem by choosing, for example,

k or the sigma in the Gaussian. We can go from overfitting to stability. But then of course we

have to choose the parameter, and we have to find good ways to choose them.

And so there are a bunch of questions. So the first one is, well, is there an optimal value at all?

OK. Does it exist? But if it does exist, I can go try to estimate it in some way. If it doesn't, well it

does not even make sense. I just throw a random number. I just say, k equals 4. Why? Just

because. OK.

So what do you think? It exists or not? What does it depend on? Because that's the next

question. What does it depend on? Can we compute it? OK. So let's try to guess one minute

before we go and check how we do this. OK. OK.

I have to choose it. How do I choose it? What does it depend on?

AUDIENCE: Size of this.

LORENZO

ROSASCO:

One thing is the size of the dataset. Because what we saw is that a small k seems a good idea

when you have a lot of data, but it seems like a bad idea when you have few. OK. So it should

depend. It should be something that scales with n, the number of points, and probably also the

training set itself. But we want something that works for all datasets, say, in expectation. So

cardinality of the training set is going to be a main factor. What else?

AUDIENCE: The smoothness of the boundary.

LORENZO

ROSASCO:

The what?

AUDIENCE: The smoothness.

LORENZO This smoothness of the boundary. Yeah. So what he's saying is, if my problem looks like this,



ROSASCO: or if my problem looks like this, it looks like k should be different. In this case I can take any

arbitrary high k-- sorry, small k, I guess, or i. It doesn't matter, because whatever you do, you

pretty much get the good thing. But if you start doing something like this, then you want-- k is

enough, because otherwise you just start to blur everything. And this is exactly what he's

saying. If your problem is complicated or it's easy. OK.

And at the same time, this is related to the fact of how much noise you might have in the data,

OK, how much flipping you might have in your data. If the problem is hard, then you expect to

need a different k. OK. So it depends on the cardinality of the data, and how complicated is the

problem? How complicated it is the boundary? How much noise do I have? OK.

So it turns out that one thing you can ask is, can we prove it? OK. Can we prove a theorem

that says that there is an optimal k, and it really does depends on this, on this quantities. And it

turns out that you can. Of course, as always, to make a theory or to make assumptions, you

have to work within a model. And the model we want to work on is the following. You're

basically saying, this is the k nearest neighbor solution. So big k here is the number of

neighbors, and this is hat because it depends on the data. And what I say here is that I'm just

going to look at squared loss error, just because it's easy. And I'm going to look at the

regression problem, not just this classification.

And what you do here is that you take expectation over all possible input-output pairs. So

basically you say, when I tried to do math, I want to see what's ideal. An ideally I want a

solution that does well on future points. OK. So how do I do that? I think the average error

over all possible points in the future, x and y. So this is the meaning of this first expectation.

Make sense? Yes? No?

So if they fix y and x, this is the error on a specific couple input and output. I give you the input.

I do f(kx) and then I check if it's close or not to y. But what I want to do if I want to be

theoretical is to say, OK, what I would really like to be small is this error over all possible

points. So I take the expectation, not the one on the training set, the one in the future. And I

take expectation so that if points are more likely to be simple, they will count more than points

that are less likely to be simple. OK.

AUDIENCE: What was Es?

LORENZO

ROSASCO:

We haven't got to that one yet. OK. So Exy is what I just said. What is Es? It's the expectation

over the training set. Why do we need that? Well because if we don't put that expectation, I'm



basically telling you what's the good k for this one training set here.

Then I give you another training set and I get another one, which is in some sense is good, but

it's also bad, because we would like to have a take-home message that we hold for all training

sets. And this is the simplest. You say, for the average training set, this is how I should choose

k. That's what we want to do. OK. So the first expectation is to measure error with respect to

the future. The second expectation is to say, I want to deal with the fact that I have several

potential training sets appearing. OK.

So in the next couple of slides, this red dot means that there are computations. OK. And so I

want to do them quickly. And the important thing of this bit is, it's an exercise. OK. So this is an

exercise of stats zero. OK. So we don't want to spend time doing that. The important thing is

going to be the conceptual parts. I'm going to go a bit quickly through it.

So you start from this, and you would like to understand if there exists-- so this is the quantity

that you would like to make small, ideally. You will never have access to this, but ideally, in the

optimal scenario, you want k to make this small. OK. Now the problem is that you want to

essentially mathematically study this m minimization problem, but it's not easy, because, how

do you do this? OK. The dependence of this function on k is complicated. It's that equation we

had before, right? So you kind of just take the derivative and set it equal to zero. Let's keep on

going into to.

So what we are at is, these are the points I would like to make small. I would like to choose k

so that I can make this small. I want to study this from a mathematical point of view. But I

cannot just use what you're doing in calculus, which is taking a derivative and setting it equal

to zero, because the dependence of these two k, which is my variable, it's complicated. OK. So

we go a bit of a round way. We turn out to be pretty universal.

And this is what we are going to do. First of all, we assume a model for our data. And this is

just for the sake of simplicity. OK. I can use a much more general model. But this is the model.

I'm going to say that my y are just some fixed function of star plus some noise. OK. And the

noise is zero mean and variance sigma square for all entries. OK. This is the simplest model.

It's a Gaussian regression model.

So one thing I'm doing, and this is like a trick and you can really forget it, but it just makes life

much easier is that I take the expectation over xy and a condition here. OK. The reason why

you do this is just to make the math a bit easier. Because basically now, if you put this



you do this is just to make the math a bit easier. Because basically now, if you put this

expectation out, and you look just at these quantities, you're looking at everything for fixed x.

And these just become a real number, OK, not the function anymore. So you can use normal

calculus. You have a real-valued function and you can just use the usual stuff. OK.

Again, I'm going to going a bit quickly over this because it doesn't really matter. So this

ingredient one. This is observation two. Observation three is that you need to introduce an

object between the solution you get in practice and this ideal function. What is this? It's this

kind of, what is called the expectation of my algorithm. What you do is that-- in my algorithm

what I do here is that I put Yi, i OK, just the label of my training set. And the label are noisy.

But this is an ideal object where you put the true function itself, and you just average the value

of the true function.

Why do I use this? Because I want to get something which is in between this f-star and this f-

hat. So if you put k big enough-- so if you have enough points, this is going to be-- sorry, if you

take k small enough-- so this is closer to f-star than my f-hat, OK, because you get no noisy

data. And what I want to do-- oops. What I want to do is that I want to plug it in the middle and

split this error in two. And this is what I do. OK. If you do this, you can check that you have a

square here. You get two terms. One simplifies, because of this assumption on the noise, and

you get these two terms. OK.

And the important thing is these two terms are-- one is the comparison between my algorithm

and its expectation. So that's exactly what we called a variance. OK. And one is the

comparison between the value of the true function here, and the value of this other function.

Sorry, this should be-- oh yeah. This is the expectation, which is my ideal version of my

algorithm, the one that has access to the noiseless labels. OK. It's what you call a bias. It's

basically because, instead of using the exact value of the function, you blur it a bit by

averaging out. OK. You see here, instead of using the value of the function, you average out a

few nearby values. So you're making it a bit dirtier.

The question now is, how would these two quantities depend on k? How this quantity depends

on k and how this quantity depends on k. OK. And then by putting this together, we'll see that

we have a certain behavior of this, and a certain behavior of this. And then balancing this out,

we'll get what the optimal value looked like. And this is going to be all useless from-- so these

are going to be interesting from a conceptual perspective. We're going to learn something, but

we'll still have to do something practical, because nothing of this you can measure in practice.



OK.

So the next question would be, now that we know that it exists and it depends on this stuff,

how can we actually approximate it in practice? And cross-validation is going to pop out of the

window. OK. But this is the theory that shows you that this would help proving a theory that

shows that cross-validation is a good idea, in a precise sense.

The take-home message is, by making this model and using this as an intermediate object,

you split the error in two, and you start to be able to study. And what you get is basically the

following. This term, by basically using-- so we assume that the data-- I didn't say that, but

that's important. We assume that the data are independent with each other. OK. And by using

that, you get these results right away, essentially using the fact that the variance of the sum of

the independent variable is the sum of the variances. You get these results in one line. OK.

And basically what this shows is that, if k gets big-- so variance is another word for the stability.

OK. So if you have a big variance, things will vary a lot. It will be unstable. So what you see

here is exactly what we observe in the plot before. If k was big, things are not changing as

much. If k was small, things were changing a lot. OK. And this is the one equation that shows

you that. OK. And if you just look at that, it would just tell you, the big is better. Big, respect to

what? To the noise. OK. If there is a lot of noise, I should make it bigger. If there's more noise,

I can make it smaller.

But the point is that we saw before is that the problem of putting k large was that we were

forgetting about the problem. We're just getting something that was very stable but could be

potentially very bad, if my function was not that simple. OK. This is a bit harder to study

mathematically. OK. This is a calculation that I show you because you can do it yourself in like

20 minutes, or less. This one takes a bit more. But he can get the hunch on how it looks like.

And the basic idea is what we already said. If k is small, and the points are close enough,

instead of f-star x, we are thinking of f-star Xk, Xi. And the i is closing off. OK. Now if we start to

put k bigger, we start to blur that prediction by looking at many nearby points. But here there is

no noise. OK. So that sounds like a bad idea. So we expect the error in that case to be either

increasing, or at least flat with respect to k. So when we take k larger, we're blurring this

prediction, and potentially make it far away from the true one. OK.

And you can make this statement precise. You can prove it. And if you will prove it, it's

basically that you have-- what happened? You have linear dependence. So the error here is



linearly increasing or polynomially increasing-- in fact I don't remember-- with respect to k. OK.

So the reason why I'm showing you this, skipping all these details, is just to give you a feeling

of the kind of computation that answered the question if there is a optimal value and what it

depends on.

And then at this point, once you get this, you start to see this kind of plot. And typically here I

put them the wrong way. But here you basically say, I have this one function I wanted to study,

which is the sum of two functions. I have this, and I have this. OK. And now to study the

minimum, I'm basically going to sum them up and see what's the optimal value to optimize this

too. And the k that optimized this is exactly the optimal k. And you see that the optimal k will

behave as we expected. OK.

So here, one ingredient is missing. And it's just missing because I didn't put it in, which is the

number of points. OK. It's just because I didn't renormalize things. OK. It should be a 1 over n

here. It's just that I didn't renormalize. OK. But you announced it, and it's good, because it's

true. There should be a 1 over n there. But the rest is what we expected. OK.

In some sense what we expect is that if my problem is complicated, I need the smaller k. If

there is a lot of noise, I need a bigger k. And depending on the number of points, which would

be in the numerator here, I can make a bigger or a larger. k. OK.

This plot is fundamental because it shows some property which is inherent in the problem. And

the theorem that somewhat is behind it-- intuition I've been saying, repeating over and over,

which is this intuition that you cannot trust the data too much. And there is the optimal amount

of trust you can of your data based on certain assumptions. OK. And in our case, the

assumption where this kind of model. So little calculation I'll show you quickly, grounds this

intuition into a mathematical argument. OK.

All right. So we spent quite a bit of time on this. In some sense, from a conceptual point of

view, this is a critical idea. OK. Because it's behind pretty much everything. This idea of, how

much you can trust or not of the data. Of course here, as we said, this has been informative,

hopefully. But you cannot really choose this k, because you would need to know the noise, but

especially to know how to estimate this in order to minimize this quantity.

So in practice what you can show is, you can use what is called cross-validation. And in effect,

cross-validation is one of a few other techniques you can use. And the idea is that you don't

have access [AUDIO OUT] but you can show that if you take a bunch of data points, you split



have access [AUDIO OUT] but you can show that if you take a bunch of data points, you split

them in two, you use half for the training as you've always done, and you use the other half as

a proxy for this future data. Then by minimizing the k-- taking the k that minimized the error on

this so-called holdout set, then you can prove it's as good as if you could have access to this.

OK. And it's actually very easy to prove. You can show that if you're just split in two, and you

minimize the error in second half-- you do what is called the holdout cross-validation-- it's as

good as if you'd had access to this. OK. So it's optimal in a way.

Now, the problem with this is that we are only looking at the area and expectation. And what

you can check is that if you look at higher order statistics, say that variance of your estimators

and so on and so forth, what you might get is that by splitting in two, [AUDIO OUT] big is fine.

In practice the difference is small, you might get that the way you split might matter. You might

have bad luck and just split in a certain way. And so there is a whole zoology of ways of

splitting. And the basic one is, say, split-- this is, for example, the simplest. OK. Split in a bunch

of groups. OK. k-fold or v-fold cross-validation. Take one group out of the time. OK. And do

the same trick. You know, you train here and calculate the error here for different k's. Then

you do the same here, do the same here, do the same here. Sum the errors up,

renormalizing, and then just choose the k that minimizes this new form of error.

And if the data there are small, small, small, then typically this set will become very small. And

then delimited, it becomes one, the leave one out error. OK. What you do is that you literally

leave one out, train on the rest, get there for all the values of k in this case. Put it back in, take

another one out, and repeat the procedure.

Now the question that I had 10, 15 minutes ago was, how do you choose v? OK. Shall I make

this two? So I just do one split like this? Or shall I make it n, so I do leave one out? And as far

as I know there is not a lot of theory that would support an answer to this question. And what I

know is mostly what you can expect intuitively, which is, if you have a lot of data points-- what

does it mean a lot? I don't know. If you have two million, 10,000, I don't know. If you have a big

dataset, typically splitting in two, or maybe doing just random splits is stable enough. What

does it mean? That you try, and you look at how much it moves.

Whereas if you have say-- you know, I don't know if it even exists, the implication like, you

know, a few years ago there were micro-reapplication where you would have 20, 30 inputs,

and you have 20 dimensions. And then in that case, you really don't do much splitting. If you

have 20, for example, you try to leave one out and it's the best you can do. And it's already



very unstable and sucks. OK. So in this case, there is work to be done. I mean, as far as I

know, that's the state of things.

OK. So we introduced a class of very simple algorithms. They seem to be pretty reasonable.

They seem to allow us, provided that we have a way to measure distances or similarity, to go

from simple to complex. And we have some kind of theory that tells us what is the optimal

value of a parameter, a kind of practical procedure to actually choose it in practice. OK.

Are we done? Is that all? do we need to do anything else? What's missing here? One thing

that is missing here is that most of the intuition we developed so far are really related to low

dimension. OK.

And here, very quickly, if you just do a little exercise where you try to say how big is a cube

that covers 1% of the volume of a bigger cube of a unit length? OK. So the big cube is volume

1. The length of that is just 1. And it ask you, how big is this, if it has to cover 1% of the

volume? It's really to check that these are just going to be a dth-root where d is the dimension

of the cube. And this is the shape of the dth-root. OK.

So if you're in low dimension, basically, 1% is intuitively small within the big cube. But as soon

as you're go in higher dimensional, what you see is that the length of the edge of the little cube

that has to cover 1% of the volume becomes very close to 1, almost immediately. It's this

curve going up. OK.

What does it mean? That if you say, our intuition is, well, 1%. It's a pretty small volume. If I just

took the neighbors in 1%, they're pretty close, so they should have the same label. Well, in

dimension 10, it's everything. OK. So our intuition-- now you can say that probably there is

something wrong with my way of thinking of volume, sure. But the problem is that we have to

rethink a bit how you think of dimensions and similarity in high dimension, because things that

are obvious low dimensional start to be very complicated. OK.

And the basic idea is that this neighbor technique just looks at what's happening in one region.

But what you hope to do is that if your function actually has some kind of global properties--

so, say for example a sign is the simplest example of something which is global, because the

value here and the value here are very much related. And then it goes up and it's the same.

And then it goes down.

So if you know something like this, the idea is that you can borrow strength from points which



are far away. In some sense the function has some similar properties. And so you want to go

from a local estimation to some form of global estimation. OK. And instead of making a

decision based only on the neighbors of the points, you might want to use points which are

potentially far away. OK. And this seems to be like a good idea in high dimensions where the

neighboring points might not give enough information . And that's kind of what's called, curse

of dimensionality. OK.

So what I want to do next-- we can take a break here-- is discussing least squares and kernel

least squares. OK. But what we're going to do is that we're going to take a linear model of our

data, and then we are going to try to see how you can estimate and learn. And we're going to

look at bit of the computation and a bit of the statistical idea underlying this model. And then

we're going to play around in a very simple for way to extend from a linear model to a non-

linear model and actually make it non-parametric. I'll tell you what non-parametric means.


