
	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

 	 	 	 	
 	 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	

	 	 	 		

	 	 	
	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	

	

	

	

	
	
	

	

	

	
	

	

Assignment	 3:	Graphics

Overview
In Lecture, we learned about displaying simple graphics, using the Kivy canvas to draw a
primitive shape, and connecting that to user input. We also learned about	 different	 types of
animation. In this assignment, you will enhance the behavior of the animated systems and
make them	 musical. This assignment builds on	 previous ones. You	 will need to use code and
wave files from Assignments 1 and 2,	or 	use 	the 	instructors’	versions 	which 	are 	provided	 in	
the common directory.

Part 1:	Bubbles 	Music
Start with the Key-Frame animated bubbles code we saw in class and add the following

features:

Music:

•	 Whenever a touch_down event happens, play	 a	 note with the NoteGenerator from
Assignment 1 (or	 see common/note.py).

•	 When choosing the parameters of the notes	 to play,	create a 	system 	that 	varies at
least two note parameters (e.g., pitch, gain, duration, timbre).

•	 Choose these note parameters based something that is	 not random. For	 example,
you can look	 at touch	 position, or keys-held-down,	or 	lookup values from a
sequence.

Graphics:
•	 Instantiate a bubble for each note played, but create a new animation for that

bubble that is different from the examples in	 class. Some ideas:
o	 Different shapes: non-circular ellipses,	number 	of 	segments
o	 Different sizes
o	 Different colors and color animations. Look up Color in Kivy docs

(Color.rgb and Color.hsv)
o	 Bubble motion can be based on keyframes or on calculated dynamics.

•	 Whatever you do, make sure there is a clear mapping between	 the	 visual aspects of
a	 Bubble and the musical/sonic properties of the generated noted.

Feel free to	 change anything	 you need	 to	 about Bubble and	 MainWidget,	including __init__
parameters and member variables.

Part2: Bouncy Music
Start with the Physics-based bubbles code and add the following features:

•	 Make the bubbles bounce off the sides in addition to the bottom.
•	 After a fixed number of bounces, disable the collision planes and have the bubble fall

off-screen and disappear. Indicate that the animation is done by returning False in
on_update.

•	 Implement	 a bounce callback. Whenever PhysBubble detects that a collision	
happened, it will call a function with parameters (self, velocity) – where self is

http:common/note.py
http:common/note.py

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 		

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	

	

	

	
	

the PhysBubble instance and velocity	 represents the size of the bounce. See
listen_func in audio.py for an example of	 a callback function. This callback function	
is passed into PhysBubble as an initialization argument.

• Implement on_collide() as the callback function in MainWidget and make it play a
note. For each	 bubble bounce, you	 should hear a	 note playing. Make the note playing
scheme interesting (i.e.,	not 	just 	random 	notes).	Some 	ideas:

o Each particular bubble instance plays the same note. But all together, they
form some nice sounding chord/arpeggio, which	 can	 evolve over time.

o Each bubble instance plays different notes. Maybe a	 little sequence?	 And
then it	 disappears after the sequence ends.

o Do something with the velocity parameter generated by each bounce.
o As before, feel	 free to change whatever you need in the code, including

function parameters,	callback 	parameters, and member variables.

Part3: Creative	 Music
You	 have seen a variety of graphics techniques in lecture. Now that	 you have warmed up
with Parts 1 and 2, create your own unique system that	 marries graphics and music.	 Create
something graphical that	 is different from colored circles of	 Parts 1 and 2.	 Look into	 using
Lines, Rectangles, Particle Systems (in	 addition	 to ellipses). For music, use NoteGenerators
or WaveGenerators,	or 	both.

Briefly document how to control your system in a README file. Create a video	 for Part 3.

Finally...
Please have good	 comments in	 your code. When	 submitting your solution, submit a zip	 file
that	 has all the necessary files. For example, if you used other files that I provided (like	
core.py), re-provide those files back	 to me in	 your submission.

http:audio.py
http:audio.py

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

