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1 Elementary Probability

Probability allows us to study the likelihood of an event’s occurrence. Consider rolling a fair die.
We do not know what number will be rolled with certainty but we know there is a chance of rolling
a 4. Before assigning likelihoods to values, we define the basic underlying framework.

e Experiment: an action where the result is uncertain
e Sample space: the set of all possible outcomes of an experiment
e Event: a subset of the sample space

In our die example, the experiment is rolling a die once. The sample space is {1, 2, 3, 4, 5, 6}.
Rolling a 4 would be an example of an event.

Given a sample space S, the probability P is a function from the space of events in S to the
interval [0, 1]. It satisfies the following properties:

1. Countable additivity: For any sequence A; of events in S such that A; N A; = () for all i # j,
then P(G A;) = 372, P(A;). In words, the probability of any disjoint event occurring in
some seép:l}ance is equal to the sum of their individual probabilities.

2. Normalization: P(S) =1

Question: If A € S with probability P(A), what is the probability of the event A., A’s complement?
By their definition, A and A. satisfy AU A, = S and AN A. = (). Therefore, we have 1 = P(S) =
P(AUA;) = P(A)+ P(A;) and P(A.) =1 — P(A). For example, the probability of not rolling a
4 is equal to 1 minus the probability of rolling a 4.

Given events A and B where P(B) > 0, the conditional probability of A given B is

P(ANB)

P(AIB) = =55

(1)

Ezample: Consider a fair die, where fair means every outcome in {1, 2, 3, 4, 5, 6} happens with equal
probability 1/6. Define the event A = {4or5}. What is P(A)? Simple, P(A) =1/6+1/6 =1/3.
Now, what happens if we have additional information regarding the toss.

e Case 1: If By = "the outcome is an even number”, then P(A|B;) =1/3

e Case 2: If By = "the outcome is larger than 3”7, then P(A|Bs) =2/3



e Case 3: If B3 = "the outcome is less or equal to 3", then P(A|B3) =0

Two events are independent iff P(A N B) = P(A)P(B). Independence implies P(A) =
P(A|B) assuming P(B) > 0, which means that B’s occurrence provides no information about
A. Independence simplifies many calculations. Two important theorems using the concept of
conditional expectation are:

Theorem 1 (Law of Total Probability) If A is an event and B; is a sequence of n events
that partitions the sample space (meaning they are all disjoint and their union equals the sample
space), then

P(A) =) P(A|B)P(B)). (2)
=1

Theorem 2 (Bayes’ Theorem) For events A and B with P(B) > 0,

_ P(BJA)P(A) P(BJA)P(A)
P(A|B) = P(B)  P(B|A)P(A) + P(B|A.)P(A.) @)

where the second equality follows from the Law of Total Probability.

2 Random Variables

A random variable (rv) is a function X : S — R that assigns a real number to each event in the
sample space. For example, consider an experiment where we toss a coin ten times. The sample
space is the collection of all possible combinations of H and T of size 10. A possible event is
s ={HHHTHHHTTT} € S. We can define the random variable Y that counts the number of
heads. In our example, Y (s) = 6.

A random variable is called discrete if it takes on at most a countable set of values. For every
discrete random variable X we define the probability mass function (pmf) of X by

px(z) =P({s€S:X(s)=ux}) (4)
We usually omit the argument of the rv X and simply write
px(z) = P(X = x) (5)

Assume the random variable X takes values in the set a1, a9, ..., a, and the random variable Y
takes values in the set by, bo, ..., b,,. We say that X and Y are independent random variables if

P({X = a;} N {Y = b;}) = P(X = a)P(Y = b)) (6)
for every i =1,2,...,nand j =1,2,...,m.
All random variables have a cumulative distribution function F', which is defined as

Fx(x) = P(X <) (7)



Continuous random variables, which can take a uncountably infinite set of values, do not have a
pmf. Instead, they have a probability density function (pdf) f, defined as

fx(@) = - P() ¥

where

Plz € A) = /A fx(2)dz ()

2.1 Expectation and Variance

The expected value of a random variable X, also called its mean, is the probability-weighted
average value for the variable. It is defined as

E[Xcontinuous] = /fo(x)dac (10)

E[Xdiscrete] = Z TiPX (351) (11)

For independent random variables X and Y, E[XY| = E[X]|E[Y].

The variance of a random variable X measures how dispersed it is around its mean. In a sense,
it captures how variable it is.

Var(X) = B[(X - B[X])’] = B[X?] - E[X]? (12)

The covariance of two random variables X and Y measures how much they co-vary or co-move.
Le., if X goes up, does Y go up or down. It is defined as

cou(X,Y) = E[(X — E[X))(Y — E[Y])] = E[XY] - E[X|E[Y] (13)
Theorem 3 (Variance of Sums) For any sequence X; of random variables
Var(z Xi) = Z Var(X;) + Z cov(X;, Xj) (14)
i=1 i=1 i#j

Remark: As a special case, when X; and X; are independent for each ¢ # j, the second term above
vanishes and

Var() _X;) =) Var(X) (15)
=1 i=1

2.2 Common Distributions

A quick reminder of some useful random variables and their distributions.

e Bernoulli: Models a biased coin toss with bias parameter p. Random variable X takes value
1 with probability p and value 0 with probability 1 — p



e Binomial: Models the sum of outcomes of n biased coin tosses with bias parameter p.
Random variable X takes the values in {0, ...,n} with pmf px(z) = (")px(l —p)F

xT

e Geometric: Models the number of tosses until a heads appears in biased coin tosses with
bias parameter p (giving the probability of heads). I.e. the number of trials until the first
success. Random variable X takes the values in {1, ...} with pmf px(z) = (1 — p)*~!p

e Poisson: One form of continuum limit for the binomial distribution when p becomes small

and n becomes large. Governed by an intensity / rate parameter A\. Random variable X takes
67)\)\1
z!

values in {0, ...} with pmf px(z) =

!The skeleton for these notes was provided by the recitation notes for MIT 6.268 Network Science and Models
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