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“Object recognition” (operationalized)

WA

Building Other latent variables
Tree about each object:
position, size, pose, etc.
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Lamp post

Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)



Why study object recognition in the brain?

The brain’s internal representation of objects is the
substrate of cognition:

* memory - Obstacle avoidance
- value judgements - Navigation

- decisions - Danger avoidance

- actions « Resource detection

 Social interactions
» Mate selection
 Threat detection

- Reading



The convergence of three fields

When biological brains perform better than computers

New ideas,

algorithm parameters
New phenomena J P

psychophysics

computer

science

neuroscience

How the brain works

Attempt to test/
falsify those

hypotheses Falsifiable

hypotheses

© FreeImages.com/Marcin Jochmczyk. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

When computers perform as well as or
better than biological brains
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A bit of history...

Courtesy of Mike Tarr
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* 100 billion computing elements
* solves problems not soluble by previous machines
* requires only 20 watts of power!

Key algorithms are classified
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An engineer’s point of view...

Which system is better?

Problem to solve

Our brain

Machines today

(e.g. computers)

Calculation WINNER
Win at chess WINNER
Win at Jeopardy WINNER

“Memory”

Gateway problem (vision, neocortex)

Pattern matc

“Seeing” Our goal: Discover how the brain solves
: object recognition (algorithms)

Object recognition

WINNER

Scene “understanding”

WINNER

Walking

WINNER




A scientist’s point of view

Domain 1 Domain 2

Science: given state of Domain 1,
predict state of Domain 2

The accuracy of this predictive mapping is a
measure of the strength of a scientific field



Behavioral reports
(“perception”)

© Associated Press. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
cee https://ocw.mit.edu/help/fag-fair-use/.

© Playboy Magazine. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.

© Wikipedia User: Morio. All rights reserved.
This content is excluded from our Creative A
Q\ Commons license. For more information,

ee https://ocw.mit.edu/help/faqg-fair-use/.

© Toyota. All rights reserved. This content
is excluded from our Creative Commons

license. For more information, see al activity
https://ocw.mit.edu/help/fag-fair-use/.
spiking pattern of some I '

neural population in
response to one image

“Neural representation’-
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Accurate predictivity is the — Underlies engineer’s ability
core product of science to build, fix, or augment
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+ U4¢ Images (“perception”)

spiking pattern of some
neural population in
response to one image

For visual object
perception, this link

' Not doubting the ’
importance of these!
vWworarmougacoe o
“IT does object recognition”
“Face neurons do face tasks”

“Attention solves that”

“Neural representation’-
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Let’s try to define a domain of behavior so that we
can gauge/make progress in prediction.

Vision “Object recognition”

(including face objects)




Central ~10 degrees
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Object recognition as solved by primates ~200 ms snapshots
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Image adapted from MIT Street Scenes Database (Courtesy of Tbmmy Poggio)



Object recognition as solved by primates

Core object recognition

central ~10 deg of visual field
100-200 ms viewing duration



Our visual system excels at core object recognition

Core object recognition

central ~10 deg of visual field
100-200 ms viewing duration



Human object recognition (categorization) accuracy
as a function of image viewing time

Basic level
categorization
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All the data | will Typical primate
show you today fixation duration
during natural viewing




Let’s try to define a domain of behavior so that we
can gauge/make progress in prediction.

Vision Object recognition

“Core object
recognition”




The challenge of level

Computational theory

Representation and
algorithm

Hardware
implementation

What is the goal of the
computation, why is it
appropriate, and what
is the logic of the strat-
egy by which it can be
carried out?

How can this computa-
tional theory be imple-
mented? In particular,
what is the representa-
tion for the input and
output, and what is the
algorithm for the trans-
formation?

How can the represen-
tation and algorithm be
realized physically?

David Courtnay Marr
(1946-1980)

|ON

David Marr

© MIT Press. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faqg-fair-use/.

Marr, 1982
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Reaching a common language

Comp vision,
Machine learning

Neuroscience,
Cognitive Science

are trying to solve? Brain solves “it”

2. What do good solutions ~ Uselu/ image

. representations
look like? (‘features’)
3. How do we instantiate Algorithms,
these solutions? mechanisms
4. How do we construct Learning rules,

initial conditions,

those instantiations? training images

“Perception”
Behavior
Psychophysics

Explicit neuronal
population
Spiking patterns

Neuronal wiring /
weighting patterns

Plasticity,
architecture,
experience



Behavioral challenge 1: Many possible objects

Dog

Tiger

Car

Bear

Tie

Ant

Pumpkin

Laptop

Turtle

Pig

Boat

Shirt

Hanger

Gun

Watch

Toaster

Elephant

Camel

Guitar

Shoe

Knife

Fork

Pear

Table

Cat

Dress

Tank

Hammer

Leg

Fish

Shorts

House

Zebra

Tire

Drum

Spoon

Doctor

Spider

Clock

Camera

Horse

Burger

Pants

Tree

Nurse

Bird

Head

Mirror

Frog

Train

Necklace
|.

Pen

Helicopter

Duck

Chair

Piano

Rhino

Truck

Skirt

Wrench

Pineapple

Plane

Book

Calculator

20



Behavioral challenge 2: Common physical source (object) can

produce many images

,@jl__;ﬁ*_r@ “Ildentity preserving image variation”

View: position, size, pose, illumination Clutter, occlusion

\

o o

Pinto, Nicolas, David D. Cox, and James J. Di Carlo. "Why is real-world visual object recognition hard?"
PLoS Comput Biol 4, no. 1 (2008): e27. doi: 10.1371/journal.pcbi.0040027. License CC BY. 7 .
B subordinate

O——0" e
level variation

,.‘“-P:E 3
Poggio, Ullman, Grossberg, Edleman, Biederman, efc.
DiCarlo and Cox, TICS (2007), Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008), _ o J
DiCarlo, Zoccolan and Rust, Neuron (2012) ’m
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The brain’s “camera” represents
the image as populations of
visually-evoked “features”

.

“Joe’s” identity manifold

o _.
. Y
® ® “Oe”

neuron 1

neuron 5 ...
”»

((Joe

neuron 4

neuron 3
neuron 2

—P 000 (B

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010.

pixel RGC
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The computational crux of object and face recognition

A “good” set of visual features We assume: “shape” maps to

== “Explicit” representation / “identity” and “category”

of object shape individual 2
(IIJoeII)
¢¢ b B

U

Should be able to find it

Neural with low* number of
population training examples
separating
hyperplane
linear . downstream
classifier neuron(s)
‘¢ » individual 1
not Joe™ indiyidua
. Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
DiCarlo and COX, TICS (2007) Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object

recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010. 23
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Invariance is the computational crux of object and face recognition

Pixel population representation o
(~ retinal image representation) individual 2

ineffective
separating
hyperplane

object manifolds are “tangled” ' individual 1

(Due to identity-preserving image variation.)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010.

DiCarlo and Cox, TICS (2007); Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)
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DiCarlo and Cox, TICS (2007)
DiCarlo, Zoccolan and Rust, Neuron (2012)

j$: “Sam” ]
’
actual pixel space -

Untangled,

Tangled, implicit

Transformation ——»

explicit object
This must be information
non-linear

object information

s
[1_'3: > a powerful encoding

basis somewhere in

a poor encoding the brain
basis (for this task)
p|xe Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;

https://doi.org/10.1016/j.tics.2007.06.010. 25
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The ventral visual stream

Human Rhesus monkey

l—.—q - N N

Camel N
Dog
ohant | I “camel”
Elephant -
W

Wrench -

e B confused with

. Hanger BEEE 5
Fork - t ”
Guitar - N dog

Pen 8 1 N
Tank -
Truck -
Bird -
Hammer
Gun
Table
Calculator

.
Bear

Upshot: monkey and human basic level

0.4

0.35

0.3

0.25

282552 5% visual object recognition behavior are
§ z5£¥5" statistically indistinguishable
L -

6

Comparison of Object Recognition Behavior in Human and Monkey
R. Rajalingham, K Schmidt, J.J. DiCarlo, Vision Sciences Society (2014)

R. Rajalingham, K Schmidt, J.J. DiCarlo, J. Neuroscience (in press)

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Rajalingham, Rishi, Kailyn Schmidt, and James J. DiCarlo. "Comparison of object recognition
behavior in human and monkey." Journal of Neuroscience 35, no. 35 (2015): 12127-12136. 26



The ventral visual stream

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. [y |
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object Dec's'on
recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341. and action

="

Vi V4

"R\

Image removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library : Distributed by W.H. Freeman, c1988. ISBN: 0716750201. 2
-\

IT Memory

Ventral visual stream

We think we know where the neural mechanisms
and resulting representations that solve core />/_
object recognition live in the primate brain.

We can measure and manipulate those
representations at the level of neuronal
spikes.

Courtesy of Society for Neuroscience. License CC BY-NC-SA.
Source: Kelly, Ryan C., Matthew A. Smith, Jason M. Samonds,
Adam Kohn, A. B. Bonds, J. Anthony Movshon, and Tai Sing Lee.
"Comparison of recordings from microelectrode arrays and single

electrodes in the visual cortex." Journal of Neuroscience 27, no. . . . N
2 (2007): 261-264. Courtesy of Society for Neuroscience. License CC BY-NC-SA.

Source: Motter, BRAD C., and VERNON B. Mountcastle.
"The functional properties of the light-sensitive neurons

of the posterior parietal cortex studied in waking monkeys:
Foveal sparing and opponent vector organization.

"Journal of Neuroscience 1, no. 1 (1981): 3-26. 27
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The ventral visual stream

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341.

IT is believed to be
that powerful
encoding basis

Retinotopic map
Retinotopic map
Retinotopic map

| Retinotopic map
" non-retinotopic
>

Key concept: each area conveys a new neural population representation '

pixel RGC LGN V1 V2 V4 IT
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Retina

V2

V4
Py
Crr r ‘\/

4I

LGN

“IT” (Inferior temporal cortex)

MST| |FST

~36 M

representation)

~15 M (V4 representation)

~29 M (V2 representation)

~37 M (V1 representation)

~1M (LGN representation)
LGN ﬁ

. ~1M (RCG representation
Retmaﬁ ( P fon)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

~190 M

Latency

~100 ms

~90 ms

~80ms

~70ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012
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“IT” (Inferior temporal cortex)

MST| |FST

~36 M

representation)

~15 M (V4 representation)

~29 M (V2 representation)

~37 M (V1 representation)

~1M (LGN representation)
LGN ﬁ

. ~1M (RCG representation
Retmaﬁ ( p fon)

You are here.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

~190 M

Latency

~100 ms

~90 ms

~80ms

~70 ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012

30


http://www.sciencedirect.com

Retinal ganglion cell RF structure:

Figure removed due to copyright restrictions. Please see the video.

A Receptive fields of concentric cells of
retina and lateral geniculate nucleus

Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American

Library : Distributed by W.H. Freeman, c1988. ISBN: 0716750201.

Adapted from Hubel

On-center Off-center
[—— —— — |

3
Central
illumination

4
Surround
illumination

© McGraw-hill. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Siegelbaum, Steven A., and A. James Hudspeth. Principles of neural science. Eds. Eric R.
Kandel, James H. Schwartz, and ThomasM. Jessell. Vol. 4. New York: McGraw-hill, 2000.

Adapted from Kandel , Schwartz and Jessells1
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You are here.

“IT” (Inferior temporal cortex)

MST| |FST

~36 M

representation)

~15 M (V4 representation)

~29 M (V2 representation)

~37 M (V1 representation)

~1M (LGN representation)
LGN ﬁ

. ~1M (RCG representation
Retmaﬁ ( p fon)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

~190 M

Latency

~100 ms

~90 ms

~80ms

~70 ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012

32


http://www.sciencedirect.com

Primary visual cortex (Area V1):

Orientation
selectivity

Figure removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library: Distributed by W.H. Freeman, c1988. ISBN: 0716750201.

Orientation
selectivity with
some position

tolerance

Adapted from Kandel , Schwartz and Jessell
33



Brain-inspired computer algorithms

Examples:
» Hubel & Wiesel (1962)

Figure removed due to copyright restrictions.
Please see the video. Source: Eye, Brain, and Vision. David H. Hubel. New York: Scientific
American Library: Distributed by W.H. Freeman, c1988. ISBN: 0716750201.

FROM BIOLOGY:

*Hierarchy

eSpatially local filters
eConvolution
eNormalization
eThreshold NL
*Unsupervised learning

0000 60d ---ooéiwoo ® s
Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Q Simple cells .

Used with permission. 3 Complex cells NGl Serre, Kouh, Cadieu, Knoblich,
Source: Fukushima, Kunihiko. "Neocognitron for handwritten
- Softmax

e T L Kreiman & Poggio 2005
digit recognition. "Neurocomputing 51 (2003): 161-180. 5 34
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You are here.

MST| |FST

“IT” (Inferior temporal cortex)

~36 M

representation)

~15 M (V4 representation)

~29 M (V2 representation)

~37 M (V1 representation)

~1M (LGN representation)
LGN ﬁ

. ~1M (RCG representation
Retmaﬁ ( p fon)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

~190 M

Latency

~100 ms

~90 ms

~80ms

~70 ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012
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Area V2 (first cortical area after V1):

Original V1-like filters matched: Correlations matched:
photographs  spectrally matched noise naturalistic texture

VA
06 4 n=102
4] Interpretation:
o 0.2 4
£ "7 . . . - V2 neurons apply “and-like”
Tosq v T operators on V1 outputs
£ 06
" 04 - those “ands” are tuned
02 toward natural co-occurring
0~ - V1 statistics
| I 1
0 100 200 300

Time from stimulus onset (ms)
Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience.
Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli,
and J. Anthony Movshon. "A functional and perceptual signature of the second visual
area in primates. "Nature neuroscience 16, no. 7 (2013): 974-981.

Adapted from Freeman, Ziemba, Heeger, Simoncelli, & Movshon, Nature Neuro (2013)
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7a

LIP

MST

FST

You are here.

“IT” (Inferior temporal cortex)

representation)

~36 M

~15 M (V4 representation)

~29 M (V2 representation)

~37 M (V1 representation)

~190 M

~1M (LGN representation)
LGN ﬁ

. ~1M (RCG representation
Retmaﬁ ( p fon)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

Latency

~100 ms

~90 ms

~80ms

~70 ms

~60 ms

~50ms

~40 ms

Adapted from DiCarlo et al. 2012
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What is V4 doing?

Same animal, task, stimuli. ‘ﬁ
Increased selectivity for Rust
conjunction of features that
tend to co-occur in natural
images N

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Rust, Nicole C., and James J. DiCarlo. "Selectivity

and tolerance (“invariance”) both increase as visual information
propagates from cortical area V4 to IT." Journal of Neuroscience
30, no. 39 (2010): 12978-12995.

| \

Easier to read-out object identity in IT F

(per neuron, matched for information)
Rust & DiCarlo J Neurosci (2010)

Rust & DiCarlo J Neurosci (2012)

.»
Explicit, untangled
object representation

Tangled, implicit

object information

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341. 38
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What is V4 doing?

V4 Responses to Non-Cartesian Gratings
Gallant et al. 1996

Cell 2HSE0

P

WV

-_—

Cell 2H210

Courtesy of Journal of Neurophysiology. Used with permission.

Source: Gallant, Jack L., Charles E. Connor, Subrata Rakshit, James

W. Lewis, and DAVID C. Van Essen. "Neural responses to polar,

hyperbolic, and Cartesian gratings in area V4 of the macaque monkey."

Journal of neurophysiology 76, no. 4 (1996): 2718-2739. 39




What shape features drive V4 responses?

Adapted from C.E. Connor

Make a basis for shapes:
each shape = set of curved elements

each element = (ang position, curvature)

Hypothesis:
V4 neurons are tuned in this basis

Figure removed due to copyright restrictions. Please see the video.
Source: "Shapes Dimensions and Object Primitives" from Chalupa,
Leo M., and John Simon Werner. The visual neurosciences. [Vol. 2].

MIT Press, 2004. Harvard.
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What shape features drive V4 responses?

Adapted from C.E. Connor

Two convex projections Three convex projections Four convex projections
t— Stimulus orientation — — Stimulus orientation — — Stimulus orientation —
. 1234561728 123 45678 123 4567 8
_§ ¢ ) 0 30
25 8 Q o QO 20
o ll
a b7 g (¢
3 S ° *§ O 10
=
s ® sQU0 20O ¢ -0
S @
35 3 =2 3R
g'ﬁ,‘ @ c O
& '\ & h
o @
& 3
g c
e <
w0 |
5 o
35 L
e
w0 =)
§ 8 g E c b Shape tuning function
o3
2 (A Q 1.0-
A .
5 OO S os
-
g O 4 ;
g S © 0.0+
5 Q
S 0 O 00.3- ‘ ‘ .
o -4 0 80 180 270 360
< ) Angular position (%)
C Observed ¢y d :50
Predicted ¢y (4] 50 gg
4 : 20
Q0. @90 =00 I

V0L @O0 oo

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience.
Source: Pasupathy, Anitha, and Charles E. Connor. "Population coding of shape
in area V4." Nature neuroscience 5, no. 12 (2002): 1332-1338.

Spikes/s

04

-0.3

02
01

Spikes/s

Make a basis for shapes:
each shape = set of curved elements
each element = (ang position, curvature)

Hypothesis:

V4 neurons are tuned in this basis

Experimental result:
Hypothesis explains ~50% of the
explainable response variance

Pasupathy and Connor (V4)
Brincat and Connor (PIT)
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“IT” (Inferior temporal cortex)

~10M Latency
representation)
You are here. ~100ms
7a STP, ~90 ms
Lp| msT| |FsT PI ~80 ms
~36 M

~15 M (V4 representation)

E PO | (MT ~70ms
[ wa ]

| ~29 M (V2 representation)

~60 ms
~37 M (V1 representation)

~50 ms

~190 M
~1 M (LGN representation) ~40 ms

LGN ﬁ

. ~1M (RCG representation
Retmaﬁ ( p fon)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

Adapted from DiCarlo et al. 2012
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IT is about central vision

V4 foveal
projections
tolT

© Oxford University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Ungerleider, Leslie G., Thelma W. Galkin, Robert Desimone, and Ricardo Gattass.
"Cortical connections of area V4 in the macaque." Cerebral Cortex 18, no. 3 (2008): 477-499.

Ungerleider, L. G. et al. Cereb. Cortex 2007 ,,
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Figure removed due to copyright restrictions. Please see the video.
Source: Gross, Charles G., Carlos Eduardo de Rocha-Miranda, and
David B. Bender. "Visual properties of neurons in inferotemporal cortex
of the Macaque." Journal of neurophysiology 35, no. 1 (1972): 96-111.

The use of [these] stimuli was begun one day when, having failed to drive a unit
with any light stimulus, we waved a hand at the stimulus screen and elicited a

very vigorous response from the previously unresponsive neuron...

We then spent the next 12 hr testing various paper cutouts in an attempt to find
the trigger feature for this unit. When the entire set of stimuli used were ranked
according to the strength of the response that they produced, we could not find
a simple physical dimension that correlated with this rank order. However, the
rank order of adequate stimuli did correlate with similarity (for us) to the shadow

of a monkey hand" (Gross et al., 1972).
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The ventral stream and object recognition

IT neurons can be tuned to
specific combinations of
features (high “selectivity”)

Desimone et al. (1984)

Courtesy of Society for Neuroscience. License CC BY NC SA.

Source: Desimone, Robert, Thomas D. Albright, Charles G. Gross,
and Charles Bruce. "Stimulus-selective properties of inferior temporal
neurons in the macaque." Journal of Neuroscience 4, no. 8 (1984):
2051-2062.

That selectivity is
tolerant to changes in
position and size

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. .
Source: Castiello, Umberto. "Mechanisms of selection for the control of hand LOgOthetIS et al- (1995)
action. Trends in Cognitive Sciences 3, no. 7 (1999): 264-271.
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Primary visual cortex:

Orientation
selectivity

Figure removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library: Distributed by W.H. Freeman, c1988. ISBN: 0716750201.

Orientation
selectivity with
some position

tolerance

Adapted from Kandel , Schwartz and Jessell46



What stimulus feature are IT neurons actually “tuned” to?

Figure removed due to copyright restrictions. Please see the video.
Source: Tanaka, Keiji. "Neuronal mechanisms of object recognition."
Science-New York Then Washington 262 (1993): 685-685.

Figure removed due to copyright restrictions. Please see the video.
Source: Tanaka, Keiji. "Columns for complex visual object features in
the inferotemporal cortex: Clustering of cells with similar but slightly

different stimulus selectivities." Cerebral cortex 13, no. 1 (2003): 90-99.

doi: 10.1093/cercor/13.1.90.
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IT has spatial organization at 500 um - 1 mm scale

Figure removed due to copyright restrictions. Please see the video.
Source: Tanaka, Keiji. "Columns for complex visual object features

in the inferotemporal cortex: Clustering of cells with similar but slightly
different stimulus selectivities." Cerebral cortex 13, no. 1 (2003): 90-99.

Figure removed due to copyright restrictions. Please see the video.
Source: Tanaka, Keiji. "Columns for complex visual object features in
the inferotemporal cortex: Clustering of cells with similar but slightly
different stimulus selectivities." Cerebral cortex 13, no. 1 (2003): 90-99.
doi: 10.1093/cercor/13.1.90.
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Larger scale (2-6 mm) organization for some image contrasts

ML

Figure removed due to copyright restrictions. Please see the video.

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more informationsee https://ocw.mit.edu/help/fag-fair-use/.

Source: Tsao, Doris Y., Winrich A. Freiwald, Roger BH Tootell, and Margaret S.
Livingstone. "A cortical region consisting entirely of face-selective cells."

Science 311, no. 5761 (2006): 670-674.

Tsao, Freiwald, and Livingstone used Most of the single neurons in these
fMRI to reveal a set of face selective regions showed a preference for
regions in IT (aka “face patches”) frontal faces

Tsao et al., Science 2006
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IT selectivity Is particularly clustered
for some image contrasts

face objects

objocts MUA
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i
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-
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Issa et al., J Neurosci 2013

Source: Issa, Elias B., Alex M. Papanastassiou, and James J. DiCarlo.
"Large-scale, high-resolution neurophysiological maps underlying FMRI Aparacio*, Issa* DiCarlo (In prep)
of macaque temporal lobe." Journal of Neuroscience 33, no. 38 (2013): ’ ’

50

15207-15219.




DiCarlo and Cox, TICS (2007)
DiCarlo, Zoccolan and Rust, Neuron (2012)

IT Space

’

‘(Sam” “J

oe
actual pixel space @

Tangled, implicit Untangled,
object information explicit object
onet poont information

—> 000
a poor encoding
basis (for this task)
pixe LGN V1

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition.” Trends in cognitive sciences 11, no. 8 (2007): 333-341.

basis somewhere in
the brain

IT
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Example spiking activity in IT

Figure removed due to copyright
restrictions. Please see the video.
Source: Eye, Brain, and Vision.
David H. Hubel. New York: Scientific
by W.H. Freeman, c1988. ISBN:
0716750201.

10 mm
© Source Unknown. All rights reserved. This content is © Source Unknown. All rights reserved. This content is
excluded from °‘1r Creative Commons license. For more excluded from oyr Creative Commons license. For more
information, see |https://ocw.mit.edu/help/faq-fair-use/. information, seeLihttps://ocw.mit.edu/help/faq—fair—use/.

S Ite 1 © AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, seejhttps://ocw.mit.edu/help/faq-fair-use/.
Source: Hung, Chou P., Gabriel Kreiman, Tomaso Poggio, and James J. DiCarlo. "Fast readout of object
identity from macaque inferior temporal cortex. "Science 310, no. 5749 (2005): 863-866. =

0 100
m 52
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An early test of the IT population

A broad set of 78 test objects from eight categories ...

For each, test changes
in position and scale

100ms 100 ms 100 ms

fixation task

15 images per trial

10 repetitions per image
randomized and counter-balanced

time — 100 ms

Hung®*, Kreiman®, Poggio and DiCarlo, Science (2005
© AAAS. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Source: Hung, Chou P., Gabriel Kreiman, Tomaso Poggio, and James J. DiCarlo. "Fast readout of object
identity from macaque inferior temporal cortex. "Science 310, no. 5749 (2005): 863-866.
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The “mean” IT population

(n ~ 350 IT sites)

54



How do we test if the population image is “good”?

Implicit Explicit
representation representation
neuron 2 neuron 2
Object “A”
neuron 1 neuron 1

Linearly separable

‘inaccessible” “accessible”
object information object information

BAD €10]0]D,




How explicit (“good”) is object information in IT?

Biologically
plausible linear
classifiers

Response vector

Population activity
| || || | neuroni —-
E——

B '
RIEE I
R

.
NI ]

| |lll  neuronN . 4

(n ~ 350 IT sites) -

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005)

Predicted object
category

e.qg. “human face” classifier

cat/dog

human face —

toys

food

neuron 1

‘ﬂ neuron 2

neuron 3

monkey face

white box contours

hand/body

vehicles
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Explicit object 1001 'Categorization’
n o - \
information in IT ?

(n=64 sites)
tion

'ldentifice

.",""""")

201

Classification performance
(% correct)

1 4 16 64 256 Size: 3.4°

Number of sites Position: center

e.g. V1vs. IT or V4vs. IT r
» Consistent with other IT work

(e.g. Rolls, Tanaka, Miyashita, Yamane, Sugase, Logothetis, VVogels, Connor, ...)
TEST

. . . TRAIN
Does not work in earlier visual areas { n

Rapid, explicit object representation in IT

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005)
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Summary so far:
the problem of visual object recognition
a tour of the ventral stream

IT population seems to have solved a key problem

Over the last 40 years. we (the field) have largely described
important phenomenology

Next phase of this field: developing and testing predictive
models



© Playboy Magazine. All rights reserved.
This content is excluded from our Creative

Commons cense. For more Information, Behavioral reports /
: perception (“mind”)

Neural activity

e.g. spiking pattern of
a neural population

“Neural representation”

Goal is accurate
predictivity

59
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(Domain: core object recognition)

Goal: end-to-end understanding

1. Can we infer the precise mechanism(s)
that the brain uses to support perceptual reports about
visually presented objects?

2. Can we infer the mechanism(s) that
accurately predicts the relevant ventral stream
population patterns of neural activity from each image?




© Playboy Magazine. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/,

Generative
image domain

(single foreground

a specific spiking pattern over
the I'T neural population in
response to a specific image

“IT Neural
representation”

© Dr Jonathan Clarke. Wellcome Images. All rights reserved.
This content is excluded from our Creative Commons license.

Behavioral reports
(“perception”)

Specific task
domain

(nouns)

For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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3-d object Models

(e.g."car’”)



experimenter-chosen
view parameters

Position
+ Size
Pose



ray-trace render

e



place on a randomly-chosen
background image




generative space of images, each with a single
foreground object and experimenter-known
viewing parameters.

uncorrelated, new background every image
==> challenging for computer vision, doable by humans

66






One example core object recognition test:

ufaceu E
E n>100 :

not “face”

= n>700

68



Another example core object recognition test:

“Beetle”

n>100

Not “Beetle”

69



(Domain: core object recognition)

Goal: end-to-end understanding

1. Can we infer the mechanism(s) that the
brain uses to support perceptual reports about visually
presented objects?

Note: this must predict behavioral report and it must
include a falsifiable statement of the relevant aspects of
neural activity (aka “neural code”)



(Domain: core object recognition)

Goal: end-to-end understanding

1. Can we infer the mechanism(s) that the
brain uses to support perceptual reports about visually
presented objects?

Note: this must predict behavioral report and it must
include a falsifiable statement of the relevant aspects of
neural activity (aka “neural code”)



Simultaneous recording of hundreds of neural sites along the ventral stream

Adapted from Kelly et al. J. Neurosci (2007)

Three, 96-electrode arrays

Courtesy of Society for Neuroscience.
License CC BY-NC-SA.

Source: Kelly, Ryan C., Matthew A. Smith, Jason
M. Samonds, Adam Kohn, A. B. Bonds, J. Anthony
Movshon, and Tai Sing Lee. "Comparison of
recordings from microelectrode arrays and single
electrodes in the visual cortex." Journal of
Neuroscience 27, no. 2 (2007): 261-264.

Array 2
location

Array 3

’--------~

&
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e.g. “response” = mean firing rate 70-170 ms after image onset

I
168 | | | | | | | |

IT Neuron #



BEHAVIOR
(64 object
recognition tests
using same images)

Performance (d”)

Amount of variation

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Majaj, Najib J., Ha Hong, Ethan A. Solomon, and James J. DiCarlo. "Simple earned weighted
NEURAL sums of inferior temporal neuronal firing rates accurately predict human core object recognition

performance." Journal of Neuroscience 35, no. 39 (2015): 13402-13418.
ACTIVITY

Humans and monkeys find some object
recognition tests more difficult than others.

This pattern of difficulty is very reliable
across observers.

This pattern is not explained by
“low level” visual features.

Which, if any, part of the IT population neural
activity pattern predicts the observed behavioral
performance over all 64 object recognition tests?

IT Neuron #

168

| Image # 2560

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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We had previously shown that simple weighted sums of IT population
responses have high performance in recognition tasks

But, could this neural code & decode, predict
behavioral face detection performance?

5
g and car detection performance?
v
5 and car1 vs. car 27?
3
Population activity = - and all such
| 1111 | newon 1 — I neuron 1 \ tasks. ..

| |
T E

[
I B |
0 = weighted sum of input
| | ||” |”| : neural activity
| &l

neuron N

Biologically plausible hypothesis
for downstream neural mechanism

Simple 100 ms rate code
(one of many possible codes)

Hung*, Kreiman®, Poggio and DiCarlo, Science (2005);
Rust & DiCarlo, J Neuroscience (2010)

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Majaj, Najib J., Ha Hong, Ethan A. Solomon, and James J. DiCarlo. "Simple learned weighted sums of inferior

“Face present”

temporal neuronal firing rates accurately predict human core object recognition performance." Journal of Neuroscience
35, no. 39 (2015): 13402-13418; DOI: https://doi.org/10.1523/JINEUROSCI.5181-14.2015. 75
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What code & decoding mechanism explains object recognition?

Our working hypothesis from previous work:

Passively-evoked spike rate codes (using a single, fixed time scale) that
are spatially distributed over a single, fixed number of non-
human primate IT cortex neurons and learned from a reasonable

number of examples.

If correct, this code/decode should predict monkey and human
reports about object category and object identity for all tasks.

Other possibilities:
Attentional and/or arousal mechanisms are needed to “activate” IT
Trial-by-trial coordinated spike timing patterns are crucial

Compartments within IT must be carefully considered
(e.g. tasks related to faces handled exclusively by “face patch” network)

IT does not directly underlie object recognition

Performance requires too many training examples

Monkey neuronal codes cannot explain human behavior

76



Our first decoder (based on previous work), with number
of neurons chosen (once) to match human performance
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Actual behavioral performance

(mean human d’)

Majaj, Hong, Solomon, and DiCarlo, Cosyne 2012

Majaj, Hong, Solomon, and DiCarlo, Under Review
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Take home: simple, learned weighted sums of IT firing rates accurately

predict the pattern of PERFORMANCE over all object recognition tests

Parameters of inferred neural
code/decoding mechanism:

- for each new object, randomly
sample ~50,000 single neurons
spatially distributed over IT

- “listen” to each IT site’s average
spiking response (ave over 100 ms)

- learn an appropriately weighted sum
of those IT spiking outputs, and then
use ~10% of them to judge the
likelihood of the object being present

Learned Weighted Sums of (~50,000)
Random Average (100 ms) single unit
responses Distributed over IT

“LaWSs of RAD IT”
decoding mechanism

n = 64 °
object tests ace

correlation ~ 0.92

. [ ) '.
R AN
o’ @ o
— ”2.. 00.
o% %
P '. [ )
AN
Car

Fruit

e e
@

>,
'.“s .
o

0,

| |
6

Actual behavioral performance

(mean human d’)

Predicted behavioral performance
(d)

o
Y
@)

Majaj, Hong, Solomon, and DiCarlo, Cosyne 2012

Majaj, Hong, Solomon, and DiCarlo, Under Review
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Some controls...
Most alternative codes/decoding mechanisms are not even close.

3
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LaWs of RAD IT

decoding
mechanism

— — —  Human-to-human consistency - — — — — — — l .

i i
]
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g B "B
= B N 0 V4-based codes J [T-based codes
- 5 i TEER
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Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Majaj, Najib J., Ha Hong, Ethan A. Solomon, and James J. DiCarlo. "Simple earned weighted
sums of inferior temporal neuronal firing rates accurately predict human core object recognition
performance." Journal of Neuroscience 35, no. 39 (2015): 13402-13418.
Majaj, Hong, Solomon, and DiCarlo, Cosyne 2012

Majaj, Hong, Solomon, and DiCarlo, Under Review
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Performance re humans

mean[d’code/d’behavior]

0.8

0.6

0.4

0.2

0.0

/ \
/ \
/ Human-like
e I |
168 \ N
\ | /T ~500IT features
features ——~ /,

128 7

_ '
% LaWs of RAD IT

~50,000 single IT neurons
randomly selected over all of IT
70-170ms
weighted linear sum (SVM)

| J 64/

|
|

|

N |
features / |

/ I

|

|

|

|

/
increase number of

v4 L
i / ® / ° neural “features”
o
ATH

| | | | | | |
00 02 0.4 0.6 0.8 0.9 0.95

[spearman correlation coefficient]

Consistency with humans

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Majaj, Najib J., Ha Hong, Ethan A. Solomon, and James J. DiCarlo.

"Simple learned weighted sums of inferior temporal neuronal firing rates Majaj’ Hong’ Solomon, and DiCarlo, Cosyne 2012
accurately predict human core object recognition performance." Journal of Majaj, Hong, Solomon, and DiCarlo, Under Review

Neuroscience 35, no. 39 (2015): 13402-13418.
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Number of single units

needed to support

Number of neural “features”

single-trial performance  (multi-unit, trial averaged)

~50,000 <«
single IT
neurons

10° -
.................................... Number of output neurons in IT
10° —
10* -
10° - *
~500 (& - - _
A family of IT codes/decodes
10% : that each accurately predict
: pattern of behavioral
10" 4 : performance
100 -  ~100

10° 10% 10* 10®° 10®° 10" 10% 10" 10%
Number of training examples per object
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Behavioral object Ground truth

- @
confusions T 4, 29 088
ST LSS D
< 506 a e
“Animal”
‘g “Boat”
Predicted: & <car
LaWs of RAD IT ‘©® “Chair”
decoding 2 “Face’
mechanism S i
Q
M “pPlane”
“Table”
Noise-corrected correlation: 0.91¢ 0.68¢
I .

This Is an opportunity to push forward:
image grain predictions to distinguish
among alternative IT codes

§

High variation



Other object latent variables

Category: plane
Identity: f16

© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hong, Ha, Daniel LK Yamins, Najib J. Majaj, and James J. DiCarlo.

"Explicit information for category-orthogonal object properties increases along

the ventral stream." Nature neuroscience 19, no. 4 (2016): 613-622.
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LaWs of RAD IT

Categorization Identification decoding mechanism

L.
"

Site 10 Site 54 Site 43 Site 11 Site 77 Site 102

@E 7

|
© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hong, Ha, Daniel LK Yamins, Najib J. Majaj, and James J. DiCarlo.
"Explicit information for category-orthogonal object properties increases along
the ventral stream." Nature neuroscience 19, no. 4 (2016): 613-622. 84
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Sum: LaWs of RAD IT performs LaWs of RAD IT
better than other codes/decodes. decoding mechanism

Categorization Identification 2-D Retinal Area Perimeter 3-D Object Scale

0.55

0.28

0.0
SR PRI Y-axis Position Major Axis Length Aspect Ratio Major Axis Angle

0.59

0.29

0.0

X-axis Size Y-axis Size Bounding Box Area Z-axis Rotation Y-axis Rotation X-axis Rotation

0.57 0.53 0.40

0.28 0.27 0.20

0.1 0.09

0.0 0.0 00

0.0 0.0

© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hong, Ha, Daniel LK Yamins, Najib J. Majaj, and James J. DiCarlo.

"Explicit information for category-orthogonal object properties increases along

the ventral stream." Nature neuroscience 19, no. 4 (2016): 613-622.

But these tasks are not all equally difficult for humans. Does
this decoding mechanism predict that pattern of difficulty?

To test this, we collected human performance data on these images/tasks. |
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Fraction of Human Performance

LaWsS of RAD IT

decoding mechanism

Basic Categorization Subordinate Identification X-axis Position Y-axis Position

Major Axis Length Aspect Ratio _ Z-axis Rotation X-axis Rotation

D T I P2

102

sl Ll

103 10*

10° 10" 102 103 10* 109 10" 102 10° 10% 10° 10"
Number of Neural Sites

© Nature. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Hong, Ha, Daniel LK Yamins, Najib J. Majaj, and James J. DiCarlo.

"Explicit information for category-orthogonal object properties increases along

the ventral stream." Nature neuroscience 19, no. 4 (2016): 613-622.
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Number of IT sites needed to

match human performance

IT V4 V1 Pix
Basic Categorization 520 +/- 1650| 8.84 x 1075 | ---
Subordinate |dentification §|444 +/- 61 }| 9.15 x 1076 | --- —
X-axis Position 1624 +/- 44| 45 x 106 | 3 x 10°7 --
Y-axis Position 647 +/- 21581 1.1 x 1075 | 8.7 x 106 |-
Bounding Box Size 234 +/- 91 8.4 x10"3 | --- ---
X-axis Size 150 +/- 55 | 2.1 x 10~3 | 3.4 x10"7 |-
Y-axis Size 182 +/-62 | 7.8 x10"3 | 95x 10" |---
-~

— (’)

T2

o 2t
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LaWs of RAD IT

decoding mechanism

IT V4 V1 Pix
3-D Object Scale §1339+/-79 (1.9 x 10”5 — -—-
Major Axis Length § (165 +/- 59 |5.7 x 1073 — -
Aspect Ratio 103 +- 37  [[922 +/- 59 6.5x 10A3 | -
Major Axis Angle §|520 +/- 165 (1520 +/- 165 — —
Z-axis Rotation 1206 +/- 473 [}--- — —

Y-axis Rotation

1317 +/- 459 1.1 x 1075

X-axis Rotation

775 +/- 248

Human behavioral performance

Consistency with human

1

© Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

V4

V1

PIX

Source: Hong, Ha, Daniel LK Yamins, Najib J. Majaj, and James J. DiCarlo. "Explicit information for category-orthogonal object properties increases along
the ventral stream." Nature neuroscience 19, no. 4 (2016): 613-622.
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LaWs of RAD IT
Category: plane decoding mechanism

Identity: 16

Summary: This ventral
stream code/decoding
mechanism also predicts
human patterns of

\ performance for other
object latent variables.

This suggests that:

- the IT population conveys a
general purpose object
representation

- the job of the ventral stream
is not to produce category
“invariant” representations

© Nature. All rights reserved. This content is excluded from our Creative Commons Edelman (1998)’ DiCarlo and Cox (2007)’
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/. i

Source: Hong, Ha, Daniel LK Yamins, Najib J. Majaj, and James J. DiCarlo. Lietal (2009), etc.

"Explicit information for category-orthogonal object properties increases along

the ventral stream." Nature neuroscience 19, no. 4 (2016): 613-622. Hong, Yamins, Majaj, and DiCarlo, Cosyne 2014

Hong, Yamins, Majaj, and DiCarlo, (in prep) 88


https://ocw.mit.edu/help/faq-fair-use/

Sketch of the inferred anatomy:

LaWSs of RAD IT [70-170ms, 50,000n, 100t]

Prefrontal Cx, Perirhinal Cx, Amygdala

~50,000
random
neuronal
projections

IT cortex (AIT + CIT)  “Face patches”
(2-5 mm)

© Source Unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

7

50, i

s (@ L[4 0|0
proje A w * < a

| 2 T

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Tanaka, Keiji. "Neuronal mechanisms of object recognition."
Science-New York Then Washington 262 (1993): 685-685.
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Causal tests of this model

LaWSs of RAD IT [70-170ms, 50,000n, 100t]

The model allows us to predict how much any
object recognition task will be disrupted by direct
suppression of IT neurons.

Step 1: (done) Tool building and testing: Can we reliably disrupt
performance of a recognition task by directly suppressing the
activity of ~1mm IT neural sub-populations?

Post-learning:

ﬁ’\ “Face”
]

Step 2 (ongoing): Test a large
battery of tasks and a battery of
IT suppression patterns.

Towards actual
“inception”

or this bit of cortex. ..~

or this bit of cortex. .. ~_

Silence this bit of cortex—__

ﬁ\? “Car”
| or this bit
of cortex...

© Source Unknown. All rights reserved. This content is excluded from our Creat
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

IT cortex (AIT + CIT) ~150 IT sub-regions, each ~1 mm in scale «
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Z Courtesy of Society for Neuroscience. License CC BY NC SA.

Source: Issa, Elias B., and James J. DiCarlo. "Precedence of the eye region in neural
processing of faces." Journal of Neuroscience 32, no. 47 (2012): 16666-16682.
B
0 100 200 300 400 500
face

Time from image onset (msec) vs

Afraz, Boyden and DiCarlo, SFN (2013) Issa and DiCarlo, J Neurosci (2012) object
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Monkey task: face gender discrimination

---------------*--

Gend i
Male enderaxis Female

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Afraz, Arash, Edward S. Boyden, and James J. DiCarlo."Optogenetic and pharmacological
suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination."
Proceedings of the National Academy of Sciences 112, no. 21 (2015): 6730-6735.
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We found a spatially-specific behavioral effect
on this object discrimination task

B Control
Trial-by-trial
interleaved optical
suppression of ~1T mm
IT sub-regions

18 sessions
each 1600 trials

behavioral accuracy
(% correct)

visual field

Afraz, Boyden and DiCarlo, SFN (2013), VSS (2014); PNAS (2019?)
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Our current aim is to{systematically Jneasure the specific

pattern of behavioral change induced by suppression of each

IT sub-region (~100) and compare with model predictions
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Can we span the entire domain of core
recognition tasks? How?

Vision Object recognition

“Core object
recognition”




Presentation Choices on this particular trial Confusion matrix for an object pair

ost-cue, many possible
(100ms) (P yp ) Stimuli
7
) or mpy S 8,556
Q matrices

(7))

oHI 5 I 115
Core recognition: only ~20 dimensions needed to characterize
confusions among all basic and subordinate-level objects

Faces P

'64 basic objects  Basic&

TN
o
]
[l
AN
o

1
T

Cars

do =10
d0=5

“Sufficient”
dimensionality

o
|

0 125 © 184 = 0
Number of objects embedded

Hong*, Solomon*, Yamins*, and DiCarlo. Large-scale Characterization of a Universal
and Compact Visual Perceptual Space. VSS, 2014; in prep

© Vision Science Society. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Hong, Ha, Ethan Solomon, Dan Yamins, and James J. DiCarlo. "Large-scale
Characterization of a Universal and Compact Visual Perceptual Space." Dim 1501 (2014): 1.
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A C

Axes in this space correspond to human shape adjectives
(subjective magnitude reports)

One important use of this result: for efficient causal testing of
the entire domain, we can focus on measuring impacts on
object discrimination tasks that span this space

B e

Ongoing ....

o

®

Variance
explained (%)
=
o

0 20
Num. of principal components

D
Chair Tank Tank Tank Turtle Tank Boook  Plane Gun Helicopter ~ Bird  Guitar Duck Boat  Fork Doctor Spoon Nursg
First principal component (17.2% variance explained)
E
Toaster Table Book Boat Tank Gun Tank Tank Plane Duck Bird Turtle Cat Frog Dog Camel
E Second principal component (13.0% variance explained)
Hammer Wrench Hanger Knife Plane  Guitar Helicopter Book Tank Gun Tank Tank Tank Bird Duck Boat Pumpkin ~ Head

Third principal component (9.28% variance explained)
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(Domain: core object recognition)

Goal: end-to-end understanding

1. Can we infer the mechanism that the brain
uses to support perceptual reports about visually
presented object?

Note: this must predict behavioral report and it must
include a falsifiable statement of the relevant aspects of
neural activity (aka “neural code”)

2. Can we infer the mechanism(s) that
accurately predict the relevant ventral stream
population patterns of neural activity from each image?



© Playboy Magazine. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,

see https://ocw.mit.edu/help/fag-fair-use/. BehaVioral reports
| | (“perception”)

IT neural
activity ,

Reveals which
aspects of IT
neural activity
must be predicted
from each image

(mean rate of each IT
neuron, 70-170 ms)
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Our goal (2008): explore a family of possible encoding mechanisms
“Deep convolutional neural networks” (Deep CNN'’s)

(i.e. retinotopy)

Basic operations: @ = (Gsier, Ors Gsat, Ooool, Grom) | Elements (“neurons”)
' have large fan-in

Filter Threshold &
S Saturate Pool Normalize Simple, bio-known
% 1 non-linearities
Dy | — —
a /| @ Each layer:
X @ Neural-like basic operations Is convolutional

has many types of
(1) 2) 3) tuning functions
O G G

Layer 1 Layer 2 Layer 3

Top layer has
thousands of
_) visual
“‘neurons’

© Playboy Magazine. All rights reserved. N
This content is excluded from our Creative

Commons license. For more information,

see https://ocw.mit.edu/help/faqg-fair-use/.

Pinto, Doukan, DiCarlo & Cox, PLoS Comp Biol (2009)

Hubel & Wiesel (1962), Fukushima (1980); Perrett & Oram (1993); Wallis & Rolls (1997); LeCun et al. (1998);

Riesenhuber & Poggio (1999); Serre, Kouh, et al. (2005), eftc....
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Our goal (2008): explore a family of possible encoding mechanisms
“Deep convolutional neural networks” (Deep CNN’s)

Basic operations: © = (e, O, Grat, Goool, Gnorm|)_|

— Thousands of

Filter Threshold & . nknown
Pool Normalize u
X @ Saturate parameters
Qo (i.e. not directly
determined by
X @ neurobiology)
That model PREDICTS the entire neural population
response to ANY image, in each successive visual area
Vv U Vv U V U
Layer 1 l Layer 2 l Layer 3 l
; n N N X Top layer has
X0 thousands of
© ooy tgaaine, Al s e, ‘ = > visual

“neurons”

Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.

Pinto, Doukan, DiCarlo & Cox, PLoS Comp Biol (2009)
Hubel & Wiesel (1962), Fukushima (1980); Perrett & Oram (1993); Wallis & Rolls (1997); LeCun et al. (1998);
Riesenhuber & Poggio (1999); Serre, Kouh, et al. (2005), eftc....
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Our goal (2008): explore a family of possible encoding mechanisms
“Deep convolutional neural networks” (Deep CNN’s)

Basic operations: @ = (e, G, Grats Gboos Groml | 1Housands of
Filter Threshold & . known
Pool N | un
X P Saturate ormalize parameters
O S| — . @ (i.e. not directly
_ _ determined by
How do we determine which of these models, neurobiology)

__if any, is a model of the ventral stream?

1. Use optimization methods to find specific models
(i.e. parameter settings) in this model family.

2. Optimization target = visual tasks that we hypothesize

S
thousands of
_) visual
“neurons”
Layer 3
Hubel & Wiesel (1962), Fukushima (1980), Perrett & Oram (1993); Wallis & Rolls (1997); LeCun et al. (1998);
Riesenhuber & Poggio (1999); Serre, Kouh, et al. (2005), efc.... Yamins, Hong, Solomon, Seibert

and DiCarlo PNAS (2014) 102



2. Optimization target

» variety of 3D objects (36) with semantic breadth (e.g. not all faces)
» rendered with large amount of variation

» These are different objects that those we will use later in testing

Nine example objects:
Bodies Buildings Flowers Guns Instruments

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."
Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624.
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Performance
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Courtesy of Society for Neuroscience. License CC BY NC SA.

Source: Majaj, Najib J., Ha Hong, Ethan A. Solomon, and James J. DiCarlo. "Simple learned
weighted sums of inferior temporal neuronal firing rates accurately predict human core object
recognition performance." Journal of Neuroscience 35, no. 39 (2015): 13402-13418.

T V2-like

T HMAX

T PL0OS 09

= )
First algorithm we
discovered using this

approach (2012)

HMO (1.

oo
©
A
=

© Proceedings of the National Academy of Sciences. All rights reserved.
This content is excluded fromm our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faqg-fair-use/.

Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon,
Darren Seibert, and James J. DiCarlo. "Performance-optimized hierarchical
models predict neural responses in higher visual cortex." Proceedings of the
National Academy of Sciences 111, no. 23 (2014): 8619-8624.

Yamins, Hong, Solomon, Seibert
and DiCarlo PNAS (2014) 104
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®¢2 e _/_

Basic operations:
Filter Threshold & Pool
® o Saturate

q

X @, Neural-like basic operations

@ = (8filter, chr, Hsat, Hpool, enorm)

Normalize

—O

(all parameters
fixed)

© Proceedings of the National Academy of
Sciences. All rights reserved. This content is
excluded fromm our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong,
Charles F. Cadieu, Ethan A. Solomon,Darren
Seibert, and James J. DiCarlo. "Performance-

optimized hierarchical models predict neural
responses in higher visual cortex."

Ve

@(3)

Proceedings of the National Academy of
Sciences 111, no. 23 (2014): 8619-8624.

Model . Model ' Model . Model '
Iayer 1 layer 2 layer 3 layer 4

\

Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

=B E

© Source Unknown. All rights reserved. This content is excluded from our Creative

Cross-validated | Predict
linear regression y |T?
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Predictions of single site IT responses from layer 4 of HMO 1.0 model

These are PREDICTIONS: All of these objects and images were
never previously seen by the HIO model

d

Unit 1: 2= 0.48 \ x //
‘ i h ¢ “‘\’ ‘w‘

l‘ 1
i r‘r ‘ J 1 \l Y

Response* of
IT neural site

Tables

Prediction of Animals Boats Cars Chairs Faces Fruits Planes
HMO model

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."

Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624.

(* mean rate 70-170 ms after image onset) ;/2372;"% gﬁ)nghioéogggh)selbeﬁ

106


https://ocw.mit.edu/help/faq-fair-use/

Predictions of single site IT responses from layer 4 of HMO 1.0 model

These are PREDICTIONS: All of these objects and images were
never previously seen by the HIO model

Response of Unit 2: 2 = 0.55

IT neural site | all| A,

Prediction of

HMO model Animals Boats Cars Chairs Faces Fruits Planes Tables

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."

Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624.

(* mean rate 70-170 ms after image onset) ;/2372;"% gﬁ)nghioéogggh)selbeﬁ
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Predictions of single site IT responses from layer 4 of HMO 1.0 model
IT Site 42

Response
IT neural :

Prediction
HMO mod

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."
Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624.

Yamins, Hong, Solomon, Seibert
and DiCarlo PNAS (2014)
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Ability of various encoding mechanisms (specific models)
to predict IT responses to naturalistic images

Site Count

| o ~50% of IT single unit response variance predicted.
5 o Dramatic improvement over previous models.
: HMO S |
» Layer 3
» (0.36) C05F
» RS
» HMO O
| L 2
| 02 C o4t
LL
HMO 8
Layer 1 cC 03}
(0.04) I
ks
= 0.2+
©
)
=
© 0.1}
(@R
X
W o0
© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from H MO
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James LayerS

J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."
Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624.

Yamins, Hong, Solomon, Seibert
and DiCarlo PNAS (2014)
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HMO 1.0

(all parameters

Basic operations: O = (6er, Oiry Gsaty Gpool, Gnorm) :
. fixed
Filter Threshold & Pool ) © Proceedings of the National Academy of Sciences.
Saturate Normalize All rights reserved. This content is excluded from

our Creative Commons license. For more information,

X P
(0] ' ' ' see https://ocw.mit.edu/help/faqg-fair-use/.
® 2 _/_ Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu,

Ethan A. Solomon, Darren Seibert, and James J. DiCarlo.

"Peformance-optimized hierarchical models predict neural

X b, . . .
Neural-like basic operatlons responses in higher visual cortex." Proceedings of the
National Academy of Sciences 111, no. 23 (2014): 8619-8624.

@(1) \/@(2) @(3) @

Model. Model Model. Model'
layer 1V  layer 2 layer 3 layer 4
3 §§§§

Linear | Predict
regression y yv4?

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341.
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Explained Variance Fraction

Bio-inspired algorithm class + tasks in domain + optimization

==> neural-like encoding functions!

Even in intermediate layers! |

=
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V4 predictive power
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© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."

Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624. Yamins Hong Solomon. Seibert
and DiCarlo PNAS (2014) ..
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Representation Dissimilarity Matrices (Kriegeskorte, 2008)

Popululation similaritty to IT
(RDM correlation)

o
w
]

0.0 -

Explanatory power

of HMO model Current maximum possible*

explanatory power

Image
generalization

HMO Model Monkey IT

- animals
boats
cars

other chairs

models
faces

fruits

Pixels

planes

tables

IT units split-half

V1-like

HMAX

SIFT
V2-like

(o
© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."

Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624. YaminS, HOng, SOIomon, Selbert
and DiCarlo PNAS (2014) 12
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Suggests that continued optimization within this family of

models would lead to even higher neural predictive power.

12)

Q o 50% |,

< & I\
" 5 odels sampled from :
cC O |_mo-inspired family :
°e¢ T HMAX :
P - . 1
5 Q& 2 V2-like . :
o T VR ARt - X PLOSO09 .
00 U X Ry |
> T © A <t A I
290 & e A :
Q . | - % '-:o..;‘b;ﬁ."‘-éé!;? :
2 Q > 0%5;:::.. :

o O\O O N

Yo o) ~ H |.:€%':'.£:: . :
O3 0% wwg- ‘(Evolution / development).
"?-8 £IGx> We optimized this way ... :
= i .

0.7 0.8 0.9
Performance of a model on high
“invariance” object recognition tasks

© Proceedings of the National Academy of Sciences. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
Source: Yamins, Daniel LK, Ha Hong, Charles F. Cadieu, Ethan A. Solomon, Darren Seibert, and James
J. DiCarlo. "Performance-optimized hierarchical models predict neural responses in higher visual cortex."
Proceedings of the National Academy of Sciences 111, no. 23 (2014): 8619-8624.
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Suggests that continued optimization within this family of

models would lead to even higher neural predictive power,

60 JT_ A c0- )
—~~ 1 _I_ 1
S 50 | o0, >
5 Better = ;
2 401 performance 2 8 ,, .
) | on our tasks 38
S 30 l ' (>U 301
3 again leads =Z
< to better g2
Chance — neur?l . % u_%
~14% 10- predictive 10-
power
O - T T T O - T T T
\(\\\O>§ (LQ\'LK %0\'55\ ( even Wh en o th er \e&‘\o 2 fLQ'\:L ,LQ'\Tb
‘ & RO groups are driving LR
S & up the model e e
\(\‘.\,L\\G 7/6\\6 p Q 12

performance!)

Cadieu, Charles F., Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J.
Majaj, and James J. DiCarlo. "Deep neural networks rival the representation of primate IT cortex for
core visual object recognition. "PLoS Comput Biol 10, no. 12 (2014): e1003963;

https://doi.org/10.1371/journal.pcbi.1003963. License CC BY.

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013);

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. PLoS Comp Bio (2014)
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CNN features vs. IT “features”

a) Cars Fruits Animals
| | | || |
Planes
o e 0 o 00 o e 0 ..Chairs
Tables
Faces
Retinae Representation IT Cortex Representation

Ventral Stream

Oy

Deep Neural
Network (DNN)

o(z)

O Cars @ Fruits

Cadieu, Charles F., Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J.
Majaj, and James J. DiCarlo. "Deep neural networks rival the representation of primate IT cortex for
core visual object recognition. "PLoS Comput Biol 10, no. 12 (2014): e1003963;
https://doi.org/10.1371/journal.pcbi.1003963. License CC BY.

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013);
Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. PLoS Comp Bio (2014)
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CNN features vs. IT “features”
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Cadieu, Charles F., Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J.
Majaj, and James J. DiCarlo. "Deep neural networks rival the representation of primate IT cortex for
core visual object recognition. "PLoS Comput Biol 10, no. 12 (2014): e1003963;
https://doi.org/10.1371/journal.pcbi.1003963. License CC BY.

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013);
Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. PLoS Comp Bio (2014)
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Better performing deep CNN networks also better
predict the patterns of IT neural responses

V4 Cortex W |IT Cortex
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8 tables 0.0
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HMO Krizhevsky et al. 2012 = Zeiler & Fergus 2013

Model Representations
+ | T-fit

Cadieu, Charles F., Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J.
Majaj, and James J. DiCarlo. "Deep neural networks rival the representation of primate IT cortex for
core visual object recognition. "PLoS Comput Biol 10, no. 12 (2014): e1003963;
https://doi.org/10.1371/journal.pcbi.1003963. License CC BY.

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013);
Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. PLoS Comp Bio (2014)
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Summary of what | presented today (Domain: Core recognition)

1. Showed that IT firing rates are a feature basis on which
learned object judgements naturally predict human/monkey

performance; defined parameters. IR YAV ) ia
[70-170ms, 50,000n, 100t]

Inference: this might be the specific neural code and decoding
mechanism that the brain uses to support these tasks.

Systematic causal tests of this model ongoing, but results
thus far are as predicted by the model ...

2. Showed that optimization of deep CNNs (models) for invariant
object recognition tasks led to dramatic improvements in our

ability to predict IT and V4 neural responses. §/[/"[e X K/ e\'[ N WX,

Inference: the encoding mechanisms in these models are
similar to those at work in the ventral stream.

This is allowing the field to design experiments to explore what
remains unique and powerful about primate object perception.
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Expand domain of
object tasks

/. High level '
.. ventral stream ; .-
" neural activity = ../
(V4,IT) ~

S ~

Ongoing: Predictable
effects of direct neural
perturbations of IT?
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