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Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)

Car 
Person 
Building 
Tree 
Sign 
Lamp post 
...

“Object recognition” (operationalized)

Other latent variables 
about each object:  
position, size, pose, etc.
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Why study object recognition in the brain?

The brain’s internal representation of objects is the 
substrate of cognition: 

• memory • Obstacle avoidance
• value judgements • Navigation
• decisions • Danger avoidance
• actions • Resource detection

• Social interactions
• Mate selection
• Threat detection
• Reading
• ...
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When biological brains perform better than computers

computer 
science

neuroscience

psychophysics

The convergence of three fields

How the brain works

When computers perform as well as or 
better than biological brains

Falsifiable 
hypotheses

Attempt to test/
falsify those 
hypotheses

New ideas,  
algorithm parameters

New phenomena
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A bit of history…

Courtesy of Mike Tarr
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Course 9.02:  Systems Neuroscience Laboratory, Brain and Cognitive Sciences
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• 100 billion computing elements
• solves problems not soluble by previous machines 
• requires only 20 watts of power!

                         Key algorithms are classified
6
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An engineer’s point of view…

Which system is better?
Problem to solve Our brain Machines today

(e.g. computers)

Calculation WINNER
Win at chess WINNER
Win at Jeopardy WINNER
“Memory” WINNER
“Seeing”

Pattern matching WINNER
Object recognition

Scene “understanding” WINNER
Walking WINNER

Our goal:  Discover how the brain solves 
object recognition (algorithms)

Gateway problem (vision, neocortex)

WINNER
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Domain 1 Domain 2

Science:  given state of Domain 1, 
predict state of Domain 2

A scientist’s point of view

The accuracy of this predictive mapping is a 
measure of the strength of a scientific field  
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Images 

Neural activity 

“car” “dog” 

“face” 

“clock” 

“cat” 

“Neural representation” 

Behavioral reports 
(“perception”) 

spiking pattern of some 
neural population in 
response to one image 

© Associated Press. All rights reserved.© Playboy Magazine. All rights reserved.
This content is excluded from our Creative This content is excluded from our Creative
Commons license. For more information, Commons license. For more information,
see https://ocw.mit.edu/help/fa�-fair-use/. see https://ocw.mit.edu/help/fa�-fair-use/.

© Wikipedia �ser: Morio. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/fa�-fair-use/.

© Toyota. All rights reserved. This content 
is excluded from our Creative Commons
license. For more information, see 
https://ocw.mit.edu/help/fa�-fair-use/. 

© Dr Jonathan Clarke. Wellcome lmages. All rights reserved.
This content is excluded from our Creative Commons license.
For more information, see https://ocw.mit.edu/help/fa�-fair-use/. 

Accurate predictivity is the 
core product of science 

Underlies engineer’s ability 
to build, fix, or augment 
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Images

Neural activity

For visual object 
perception, this link 
has been neglected;
weakly-predictive 
word models

“IT does object recognition”
“Face neurons do face tasks”

“Attention solves that”
mechanism(s)

encoding 

Predictive  Pre
dic

tiv
e  

de
co

din
g 

mec
ha

nis
m(s)

“car” “dog”

“face”

“clock”
“cat”

Not doubting the 
importance of these!“Neural representation”

Behavioral reports 
(“perception”)

spiking pattern of some 
neural population in 
response to one image
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Vision “Object recognition”
(including face objects)

Let’s try to define a domain of behavior so that we 
can gauge/make progress in prediction.
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Object recognition as solved by primates Central ~10 degrees
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Object recognition as solved by primates ~200 ms snapshots

Image adapted from MIT Street Scenes Database (Courtesy of Tommy Poggio)
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Core object recognition  
central ~10 deg of visual field
100-200 ms viewing duration

Object recognition as solved by primates
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Our visual system excels at core object recognition

Core object recognition  
central ~10 deg of visual field
100-200 ms viewing duration
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Basic level Subordinate level

Basic level

categorization

Car

identification

Face

identification

Humans (population pooled)

Human object recognition (categorization) accuracy 
as a function of image viewing time

“Core recognition” regime

Typical primate 
fixation duration 
during natural viewing

Chance is 50%

All the data I will 
show you today
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Vision Object recognition

Let’s try to define a domain of behavior so that we 
can gauge/make progress in prediction.

“Core object 
recognition”

17



Marr, 1982

The challenge of level

David Courtnay Marr
(1946-1980)
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Reaching a common language

2.  What do good solutions 
look like?

Useful image 
representations 
(“features”)

Explicit neuronal 
population 
spiking patterns

3.  How do we instantiate 
these solutions?

Algorithms, 
mechanisms

Neuronal wiring / 
weighting patterns

Comp vision, Neuroscience, 
Machine learning Cognitive Science

1. What is the problem we 
are trying to solve?

Benchmarks
Brain solves “it” Behavior

Psychophysics

“Perception”

Learning rules, 
initial conditions, 
training images

Plasticity, 
architecture, 
experience

4.  How do we construct 
those instantiations?
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Behavioral challenge 1:  Many possible objects

Dog Turtle Elephant Cat Zebra Horse Frog Rhino

Tiger Pig Camel Dress Tire Burger Train Truck

Car Boat Guitar Tank Drum Pants Necklace Skirt

Bear Shirt Shoe Hammer Spoon Tree Pen Wrench

Tie Hanger Knife Leg Doctor Nurse Helicopter Pineapple

Ant Gun Fork Fish Spider Bird Duck Plane

Pumpkin Watch Pear Shorts Clock Head Chair Book

Laptop Toaster Table House Camera Mirror Piano Calculator
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Behavioral challenge 2:

Poggio, Ullman, Grossberg, Edleman, Biederman, etc.
DiCarlo and Cox, TICS (2007),  Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008),  
DiCarlo, Zoccolan and Rust, Neuron (2012)

“Identity preserving image variation”

View: position, size, pose, illumination

subordinate 
level variation

Common physical source (object) can 
produce many images

Clutter, occlusion

21

Pinto, Nicolas, David D. Cox, and James J. Di Carlo. "Why is real-world visual object recognition hard?"
PLoS Comput Biol 4, no. 1 (2008): e27. doi: 10.1371/journal.pcbi.0040027. License CC BY.



“Joe’s” identity manifold

neuron 2
neuron 3

neuron 1

neuron 4

neuron 5 ...

“Joe”

“Joe”

“Joe”

The brain’s “camera” represents 
the image as populations of 
visually-evoked “features”
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010.

http://www.sciencedirect.com
https://doi.org/10.1016/j.tics.2007.06.010


individual 2
(”Joe”)

individual 1
(”Sam”)

separating 
hyperplane

The computational crux of object and face recognition

DiCarlo and Cox, TICS (2007)

== “Explicit” representation 
of object shape

“Joe”

A “good” set of visual features

linear 
classifier

downstream 
neuron(s)

~~

“not Joe”

Should be able to find it 
with low* number of 
training examples

Neural 
population

We assume:  “shape” maps to 
“identity” and “category”
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010.

https://doi.org/10.1016/j.tics.2007.06.010
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Pixel population representation
(~ retinal image representation)

DiCarlo and Cox, TICS (2007);  Pinto, Cox, and DiCarlo, PLoS Comp Bio (2008)

(Due to identity-preserving image variation.) 

object manifolds are “tangled”

Invariance is the computational crux of object and face recognition
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010.
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DiCarlo and Cox, TICS (2007)

“Joe”

“Sam”
shape (~identity)

“Joe”

“Sam”

“Sam”

“Sam”

“Joe” “Joe”

Tangled, implicit 
object information

Untangled, 
explicit object 
information

other latent object parameters(e.g. position, scale)

      Transformation 

DiCarlo, Zoccolan and Rust, Neuron (2012)

This must be 
non-linear

a poor encoding 
basis (for this task)

a powerful encoding 
basis somewhere in 

the brain

25

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition. "Trends in cognitive sciences 11, no. 8 (2007): 333-341;
https://doi.org/10.1016/j.tics.2007.06.010.
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Comparison of Object Recognition Behavior in Human and Monkey 
R. Rajalingham, K Schmidt, J.J. DiCarlo, Vision Sciences Society (2014) 
R. Rajalingham, K Schmidt, J.J. DiCarlo, J. Neuroscience (in press)

Human Rhesus monkey

“tank” confused with “truck”

“camel” 
confused with 
“dog”

The ventral visual stream

Upshot:  monkey and human basic level 
visual object recognition behavior are 
statistically indistinguishable

26

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Rajalingham, Rishi, Kailyn Schmidt, and James J. DiCarlo. "Comparison of object recognition
behavior in human and monkey." Journal of Neuroscience 3�, no. 3� (201�): 12127-1213�.



Ventral visual stream

Decision 
and action

Memory

We can measure and manipulate those 
representations at the level of neuronal 
spikes. 

We think we know where the neural mechanisms 
and resulting representations that solve core 
object recognition live in the primate brain.

The ventral visual stream
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341.

 

Image removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library : Distributed by W.H. Freeman, c1988. ISBN: 0716750201.

Courtesy of Society for Neuroscience. License CC BY-NC-SA.
Source: Kelly, Ryan C., Matthew A. Smith, Jason M. Samonds,
Adam Kohn, A. B. Bonds, J. Anthony Movshon, and Tai Sing Lee.
"Comparison of recordings from microelectrode arrays and single
electrodes in the visual cortex." Journal of Neuroscience 27, no. Courtesy of Society for Neuroscience. License CC BY-NC-SA.2 (2007): 261-264.

Source: Motter, BRAD C., and VERNON B. Mountcastle.
"The functional properties of the light-sensitive neurons
of the posterior parietal cortex studied in waking monkeys:
Foveal sparing and opponent vector organization.

  "Journal of Neuroscience 1, no. 1 (1981): 3-26.

http://www.sciencedirect.com
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Key concept: each area conveys a new neural population representation

The ventral visual stream

IT is believed to be 
that powerful 

encoding basis
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341.

http://www.sciencedirect.com
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

http://www.sciencedirect.com
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

http://www.sciencedirect.com


Retinal ganglion cell RF structure:

Adapted from Hubel Adapted from Kandel , Schwartz and Jessell
31

Figure removed due to copyright restrictions. Please see the video. 
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library : Distributed by W.H. Freeman, c1988. ISBN: 0716750201. 

© McGraw-hill. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Siegelbaum, Steven A., and A. James Hudspeth. Principles of neural science. Eds. Eric R.
Kandel, James H. Schwartz, and ThomasM. Jessell. Vol. 4. New York: McGraw-hill, 2000.
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.
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Primary visual cortex (Area V1):

Orientation 
selectivity

Orientation 
selectivity with 
some position 

tolerance

Adapted from Kandel , Schwartz and Jessell
33

Figure removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library: Distributed by W.H. Freeman, c1988. ISBN: 0716750201. 



• Examples: 
• Hubel & Wiesel (1962) 

• Fukushima (1980) 

• Perrett & Oram (1993) 

• Wallis & Rolls (1997) 

• LeCun et al. (1998) 

• Risenhuber & Poggio (1999) 

• Serre, Kouh, et al. (2005)

Brain-inspired computer algorithms

•Hierarchy 
•Spatially local filters 
•Convolution 
•Normalization 
•Threshold NL 
•Unsupervised learning 
•...

Serre, Kouh, Cadieu, Knoblich, 
Kreiman & Poggio 2005

FROM BIOLOGY:

34

Courtesy of Elsevier, Inc., http://www.sciencedirect.com.
Used with permission. 
Source: Fukushima, Kunihiko. "Neocognitron for handwritten
digit recognition. "Neurocomputing 51 (2003): 161-180.

Figure removed due to copyright restrictions.
Please see the video. Source: Eye, Brain, and Vision. David H. Hubel. New York: Scientific
American Library: Distributed by W.H. Freeman, c1988. ISBN: 0716750201. 

http://www.sciencedirect.com
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

http://www.sciencedirect.com


Area V2 (first cortical area after V1):

NATURE NEUROSCIENCE VOLUME 16 | NUMBER 7 | JULY 2013 975

A R T I C L E S

orientations, positions and spatial scales. The resulting synthetic 
images had the same overall orientation and spatial-frequency con-
tent as the original (that is, the same spectral properties) but lacked 
its higher-order statistical dependencies (Fig. 1a). Naturalistic tex-
ture images were generated by also matching correlations between 
filter responses (and their energies) across orientations, positions and 
spatial scales (Fig. 1b). We used an iterative procedure (Fig. 1c) to 
match the spatially averaged filter responses, the correlations between 
filter responses, and the mean, variance, skewness and kurtosis of the 
pixel luminance distribution (‘marginal statistics’). Synthetic images 
matched for these properties contain many complex naturalistic 
structures seen in the original photograph19, readily recognizable by 
human observers22.

We synthesized images based on 15 original texture photographs, 
yielding 15 different ‘texture families’; for each original, we made 
ensembles of self-similar naturalistic texture samples, each different in 
detail but all having identical statistical dependencies and containing 
similar visual properties (Supplementary Fig. 1). Since each of these 
15 texture families was based on a different original photograph, they 
varied in their appearance and in the form and extent of their higher-
order statistical dependencies.

Differentiating V2 from V1 in macaque
We recorded in 13 anesthetized macaque monkeys the responses of 
102 V1 and 103 V2 neurons to a sequence of texture stimuli, presented 
in suitably vignetted 4° patches centered on each neuron’s receptive 
field. The sequence, which was identical for all cells, included 20 rep-
etitions for each of 15 samples of naturalistic and 15 samples of noise 
stimuli from 15 different texture families (9,000 stimuli in total). The 
textures were each presented for 100 ms and were separated by 100 ms 
of a blank gray screen, so the entire sequence lasted 30 min.

V1 neurons responded similarly to both stimulus types, whereas 
V2 neurons often responded more vigorously to naturalistic textures 
than to spectrally matched noise. This distinction between V2 and 
V1 was evident when examining individual responses as a function 
of time from stimulus onset (averaged over all samples of all texture 
families) (Fig. 2a) and when the responses were averaged over the cell 
populations (Fig. 2b). We use the term ‘modulation’ to capture the 
differential responses to textures and noise, and index its magnitude 
by taking the difference of responses divided by the sum (Fig. 2c). The 
average modulation index of neurons in V1 was near zero for most of 
the response time course, except for a modest late positive modula-
tion (Fig. 2c). Neurons in V2 showed a substantial modulation that 
was evident soon after response onset and persisted throughout the 

duration of the response (Fig. 2c). The late modulation in V1 might 
reflect feedback from V2 or other higher areas23.

V2 responses were substantially modulated by naturalistic struc-
ture on average, but the modulation was typically more pronounced 
for some texture families than for others. We examined responses as 
a function of texture family, averaged over all samples. There was a 
consistent trend across the V2 population for some texture families to 
evoke stronger modulation than others, although the most effective 
families varied from cell to cell (Fig. 2d,e). By contrast, all families 
yielded negligible modulation of V1 responses (Fig. 2d,e). In V2, the 
modulation strength across texture families was not significantly cor-
related with the response magnitude (r = 0.42, P = 0.12, correlation 
computed after averaging across cells). An analysis of the distribution 
and ranking of modulation across individual neurons ruled out the 
possibility that modulation in V1 was present but concealed by the 
process of taking means (Supplementary Fig. 2).

Some neurons were more sensitive overall to naturalistic structure 
than others. We computed a modulation index for each neuron, averaged 
over the response duration and over all samples of all texture families 
(Fig. 2f). Significant positive modulation was observed in 15% of V1 
neurons and 63% of V2 neurons (P < 0.05, randomization test for each 
neuron). The difference in modulation between V1 and V2 was signifi-
cant (P < 0.0001, t-test on signed modulation; P < 0.0001, t-test on mod-
ulation magnitude ignoring sign). Results were similar when examining 
firing rates instead of modulation index (Supplementary Fig. 3).

The receptive fields of V2 neurons are larger than those of V1, but 
this distinction did not explain the observed differences in sensitiv-
ity to naturalistic structure (Fig. 3). The stimuli presented to V1 and 
V2 cells were of the same diameter, roughly twice that of a typical V2 
receptive field and four times that of a typical V1 receptive field. There 
was no evidence of a correlation between receptive field size and 
modulation in either visual area (V1, r = 0.13, P = 0.23; V2, r = –0.13,  
P = 0.26, Fig. 3a,b). When we restricted our analysis to subsets of neu-
rons matched for average receptive field size, the difference in modu-
lation index between areas was reduced by only 9% and remained 
significant (P < 0.0001, randomization test).

0.8 V1

d

Figure 1 Analysis and synthesis of naturalistic textures. (a) Original 
texture photographs. (b) Spectrally matched noise images. The original 
texture is analyzed with linear filters and energy filters (akin to V1 simple 
and complex cells, respectively) tuned to different orientations, spatial 
frequencies and spatial positions. Noise images contain the same spatially 
averaged orientation and frequency structure as the original but lack many 
of the more complex features. (c) Naturalistic texture images. Correlations 
are computed by taking products of linear and energy filter responses 
across different orientations, spatial frequencies and positions. Images 
are synthesized to match both the spatially averaged filter responses 
and the spatially averaged correlations between filter responses. The 
resulting texture images contain many more of the naturalistic features 
of the original. More examples in Supplementary Figure 1. (d) Synthesis 
of naturalistic textures begins with Gaussian white noise, and the noise is 
iteratively adjusted using gradient descent until analysis of the synthetic 
image matches analysis of the original (see ref. 19). Initializing with 
different samples of Gaussian noise yields distinct but statistically  
similar images.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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Interpretation:   

- V2 neurons apply “and-like” 
operators on V1 outputs   

- those “ands” are tuned 
toward natural co-occurring 
V1 statistics

36

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience.  
Source: Freeman, Jeremy, Corey M. Ziemba, David J. Heeger, Eero P. Simoncelli,
and J. Anthony Movshon. "A functional and perceptual signature of the second visual
area in primates. "Nature neuroscience 16, no. 7 (2013): 974-981.

Adapted from Freeman, Ziemba, Heeger, Simoncelli, & Movshon, Nature Neuro  (2013) 
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

http://www.sciencedirect.com


V4

Same animal, task, stimuli. 
+ population linear classifiers

IT

140 V4 neurons 140 IT neurons

Nicole Rust

Easier to read-out object identity in IT
(per neuron, matched for information)

Rust & DiCarlo J Neurosci (2010)

Rust & DiCarlo J Neurosci (2012)

Explicit, untangled 
object representation

Tangled, implicit 
object information

?

Increased selectivity for 
conjunction of features that 
tend to co-occur in natural 
images

What is V4 doing?
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Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Rust, Nicole C., and James J. DiCarlo. "Selectivity
and tolerance (“invariance”) both increase as visual information
propagates from cortical area V4 to IT." Journal of Neuroscience
30, no. 39 (2010): 12978-12995.

Courtesy of �lsevier, lnc., http://www.sciencedirect.com. �sed with permission. 
Source: DiCarlo, James J., and David D. Cox. "�ntangling invariant object recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341.

http://www.sciencedirect.com


What is V4 doing?

39

Courtesy of Journal of Neurophysiology. Used with permission.
Source: Gallant, Jack L., Charles E. Connor, Subrata Rakshit, James
W. Lewis, and DAVID C. Van Essen. "Neural responses to polar,
hyperbolic, and Cartesian gratings in area V4 of the macaque monkey."
Journal of neurophysiology 76, no. 4 (1996): 2718-2739.



What shape features drive V4 responses?

Adapted from C.E. Connor Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 
V4 neurons are tuned in this basis  

40

Figure removed due to copyright restrictions. Please see the video.
Source: "Shapes Dimensions and Object Primitives" from Chalupa,
Leo M., and John Simon Werner. The visual neurosciences. [Vol. 2].
MIT Press, 2004. Harvard.



What shape features drive V4 responses?

Adapted from C.E. Connor Make a basis for shapes: 
each shape = set of curved elements  
each element = (ang position, curvature)  

Hypothesis: 

Pasupathy and Connor (V4) 
Brincat and Connor (PIT)

V4 neurons are tuned in this basis  

Experimental result: 
Hypothesis explains ~50% of the 
explainable response variance  

41

Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience.
Source: Pasupathy, Anitha, and Charles E. Connor. "Population coding of shape
in area V4." Nature neuroscience 5, no. 12 (2002): 1332-1338.
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., Davide Zoccolan, and Nicole C. Rust. "How does the
brain solve visual object recognition?" Neuron 73, no. 3 (2012): 415-434.

http://www.sciencedirect.com


IT is about central vision

Ungerleider, L. G. et al. Cereb. Cortex 2007

V4 foveal 
projections 

to IT

43

© Oxford University Press. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Source: Ungerleider, Leslie G., Thelma W. Galkin, Robert Desimone, and Ricardo Gattass.
"Cortical connections of area V4 in the macaque." Cerebral Cortex 18, no. 3 (2008): 477-499.  

https://ocw.mit.edu/help/faq-fair-use/


The use of [these] stimuli was begun one day when, having failed to drive a unit 
with any light stimulus, we waved a hand at the stimulus screen and elicited a 
very vigorous response from the previously unresponsive neuron... 

We then spent the next 12 hr testing various paper cutouts in an attempt to find 
the trigger feature for this unit. When the entire set of stimuli used were ranked 
according to the strength of the response that they produced, we could not find 
a simple physical dimension that correlated with this rank order. However, the 
rank order of adequate stimuli did correlate with similarity (for us) to the shadow 
of a monkey hand" (Gross et al., 1972).

44

Figure removed due to copyright restrictions. Please see the video.
Source: Gross, Charles G., Carlos Eduardo de Rocha-Miranda, and
David B. Bender. "Visual properties of neurons in inferotemporal cortex
of the Macaque." Journal of neurophysiology 35, no. 1 (1972): 96-111.



IT neurons can be tuned to 
specific combinations of 
features (high “selectivity”)

Desimone et al. (1984)

Logothetis et al. (1995)

That selectivity is 
tolerant to changes in 
position and size

45

Courtesy of Society for Neuroscience. License CC BY NC SA.
Source: Desimone, Robert, Thomas D. Albright, Charles G. Gross,
and Charles Bruce. "Stimulus-selective properties of inferior temporal
neurons in the macaque." Journal of Neuroscience 4, no. 8 (1984):
2051-2062.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Castiello, Umberto. "Mechanisms of selection for the control of hand 
action. Trends in Cognitive Sciences 3, no. 7 (1999): 264-271.

The ventral stream and object recognition 

http://www.sciencedirect.com


Primary visual cortex:

Orientation 
selectivity

Orientation 
selectivity with 
some position 

tolerance

Adapted from Kandel , Schwartz and Jessell
46

Figure removed due to copyright restrictions. Please see the video.
Source: Eye, Brain, and Vision. David H. Hubel. New York : Scientific American
Library: Distributed by W.H. Freeman, c1988. ISBN: 0716750201. 



What stimulus feature are IT neurons actually “tuned” to?

47

Figure removed due to copyright restrictions. Please see the video.
Source: Tanaka, Keiji. "Neuronal mechanisms of object recognition."
Science-New York Then Washington 262 (1993): 685-685.

Figure removed due to copyright restrictions. Please see the video. 
Source: Tanaka, Keiji. "Columns for complex visual object features in
the inferotemporal cortex: Clustering of cells with similar but slightly
different stimulus selectivities." Cerebral cortex 13, no. 1 (2003): 90-99.
doi: 10.1093/cercor/13.1.90.



IT has spatial organization at 500 um - 1 mm scale

48

Figure removed due to copyright restrictions. Please see the video. Figure removed due to copyright restrictions. Please see the video.
Source: Tanaka, Keiji. "Columns for complex visual object features inSource: Tanaka, Keiji. "Columns for complex visual object features
the inferotemporal cortex: Clustering of cells with similar but slightlyin the inferotemporal cortex: Clustering of cells with similar but slightly
different stimulus selectivities." Cerebral cortex 13, no. 1 (2003): 90-99.different stimulus selectivities." Cerebral cortex 13, no. 1 (2003): 90-99.
doi: 10.1093/cercor/13.1.90.



ML

Tsao et al., Science 2006

Tsao, Freiwald, and Livingstone used Most of the single neurons in these 
fMRI to reveal a set of face selective regions showed a preference for 
regions in IT (aka “face patches”) frontal faces

49

Larger scale (2-6 mm) organization for some image contrasts

Figure removed due to copyright restrictions. Please see the video.

© AAAS.  All rights reserved. This content is excluded from our Creative Commons
license. For more informationsee https://ocw.mit.edu/help/faq-fair-use/.
Source: Tsao, Doris Y., Winrich A. Freiwald, Roger BH Tootell, and Margaret S.
Livingstone. "A cortical region consisting entirely of face-selective cells."
Science 311, no. 5761 (2006): 670-674.

https://ocw.mit.edu/help/faq-fair-use/


MUA

IT selectivity is particularly clustered 
for some image contrasts

face objects

non-face 
objects

vs

Issa et al., J Neurosci 2013 
Aparacio*, Issa*, DiCarlo (In prep) 
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Courtesy of Journal of Neuroscience. License CC BY NC SA.
Source: Issa, Elias B., Alex M. Papanastassiou, and James J. DiCarlo.
"Large-scale, high-resolution neurophysiological maps underlying FMRI
of macaque temporal lobe." Journal of Neuroscience 33, no. 38 (2013):
15207-15219.



DiCarlo and Cox, TICS (2007)

“Joe”

“Sam”
shape (~identity)

“Joe”

“Sam”

“Sam”

“Sam”

“Joe” “Joe”

Tangled, implicit 
object information

Untangled, 
explicit object 
information

      Transformation 

DiCarlo, Zoccolan and Rust, Neuron (2012)

a poor encoding 
basis (for this task)

a powerful encoding 
basis somewhere in 

the brain

other latent object parameters(e.g. position, scale)
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: DiCarlo, James J., and David D. Cox. "Untangling invariant object
recognition." Trends in cognitive sciences 11, no. 8 (2007): 333-341.

http://www.sciencedirect.com


Example spiking activity in IT

© Source �nknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fa�-fair-use/.

��

© Source �nknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fa�-fair-use/.

��

Figure removed due to copyright
restrictions. Please see the video.
Source: �ye, Brain, and Vision.
David �. �ubel. New York: Scientific
by W.�. Freeman, c1�88. lSBN:

071�7�0201. 

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
Source: Hung, Chou P., Gabriel Kreiman, Tomaso Poggio, and James J. DiCarlo. "Fast readout of object
identity from macaque inferior temporal cortex. "Science 310, no. 5749 (2005): 863-866.

https://ocw.mit.edu/help/fa�-fair-use
https://ocw.mit.edu/help/fa�-fair-use
https://ocw.mit.edu/help/fa�-fair-use


A broad set of 78 test objects from eight categories …

2 deg 4 deg

2x

0.5x

An early test of the IT population

For each, test changes 
in position and scale

100 ms

time

• fixation task
• 15 images per trial
• 10 repetitions per image
• randomized and counter-balanced

. . 
100 ms 100 ms

100 ms
Hung*, Kreiman*, Poggio and DiCarlo, Science (2005)
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© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
Source: Hung, Chou P., Gabriel Kreiman, Tomaso Poggio, and James J. DiCarlo. "Fast readout of object
identity from macaque inferior temporal cortex. "Science 310, no. 5749 (2005): 863-866.

https://ocw.mit.edu/help/faq-fair-use/


The “mean” IT population

(n ~ 350 IT sites)

54



Linearly separable

Object “A”
NOT 

object “A”

How do we test if the population image is “good”?

Explicit  
representation

neuron 1

neuron 2

“accessible” 
object information

Implicit  
representation

neuron 1

neuron 2

“inaccessible” 
object information

BAD GOOD
55



…

Predicted object 
category

Biologically 
plausible linear 
classifiers

e.g. “human face” classifier

neuron 1

neuron 2

neuron 3

(n ~ 350 IT sites)

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005)

How explicit (“good”) is object information in IT?

56



• Consistent with other IT work

Rapid, explicit object representation in IT

Does not work in earlier visual areas 
e.g. V1 vs. IT  or   V4 vs. IT

 (e.g. Rolls, Tanaka, Miyashita, Yamane, Sugase, Logothetis, Vogels, Connor, ...)

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005)

Explicit object 
information in IT ?

57



Summary so far:
the problem of visual object recognition
a tour of the ventral stream
IT population seems to have solved a key problem

Over the last 40 years. we (the field) have largely described 
important phenomenology

Next phase of this field:  developing and testing predictive 
models

58



???

Goal is accurate 
predictivity 

Images

Neural activity

“Neural representation”

e.g. spiking pattern of 
a neural population

Behavioral reports / 
perception (“mind”)

Dec
od

ing
 

alg
or

ith
m ?

“car” “dog”

“face”

“clock”
“cat”
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© Playboy Magazine. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/


(Domain: core object recognition)

Goal:  end-to-end understanding
1. Can we infer the precise decoding mechanism(s) 
that the brain uses to support perceptual reports about 
visually presented objects?

2. Can we infer the encoding mechanism(s) that 
accurately predicts the relevant ventral stream 
population patterns of neural activity from each image?

60



???

Images

Neural activity

“car” “dog”

“face”

“clock”
“cat”

“IT Neural 
representation”

Generative 
image domain  

(single foreground 
object)

Behavioral reports 
(“perception”)

Specific task 
domain 
(nouns) 

a specific spiking pattern over 
the IT neural population in 
response to a specific image

???
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© Dr Jonathan Clarke. Wellcome Images.  All rights reserved.
 This content is excluded from our Creative Commons license.
 For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Playboy Magazine. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
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3-d object Models
(e.g. “car”)
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experimenter-chosen 
view parameters

Position
+ Size

Pose
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ray-trace render
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place on a randomly-chosen 
background image
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“

• generative space of images, each with a single 
foreground object and experimenter-known 
viewing parameters.

• uncorrelated, new background every image  
==> challenging for computer vision, doable by humans
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     ”ecaf“ not “face” 

One example core object recognition test:

... ...n>100 n>700
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     ”elteeB“ Not “Beetle” 
Another example core object recognition test:

... ...n>100 n>700
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(Domain: core object recognition)

Goal:  end-to-end understanding
1. Can we infer the decoding mechanism(s) that the 
brain uses to support perceptual reports about visually 
presented objects?

Note: this must predict behavioral report and it must 
include a falsifiable statement of the relevant aspects of 
neural activity (aka “neural code”)

2. Can we infer the encoding mechanism(s) that 
accurately predicts the relevant ventral stream 
population patterns of neural activity from each image?
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(Domain: core object recognition)

Goal:  end-to-end understanding
1. Can we infer the decoding mechanism(s) that the 
brain uses to support perceptual reports about visually 
presented objects?

Note: this must predict behavioral report and it must 
include a falsifiable statement of the relevant aspects of 
neural activity (aka “neural code”)
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Simultaneous recording of hundreds of neural sites along the ventral stream

V1

V2

V4

PIT

CIT
AIT

10 mm

Array 1 
location

Array 2 
location Array 3 

(in place)

2

3

1

Three, 96-electrode arrays
Adapted from Kelly et al. J. Neurosci (2007)
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Courtesy of Society for Neuroscience.
License CC BY-NC-SA.
Source: Kelly, Ryan C., Matthew A. Smith, Jason
M. Samonds, Adam Kohn, A. B. Bonds, J. Anthony
Movshon, and Tai Sing Lee. "Comparison of
recordings from microelectrode arrays and single
electrodes in the visual cortex." Journal of
Neuroscience 27, no. 2 (2007): 261-264. 
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e.g. “response” = mean firing rate 70-170 ms after image onset
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neuron 1

neuron 3
neuron 2

Hung*, Kreiman*, Poggio and DiCarlo, Science (2005); 
Rust & DiCarlo, J Neuroscience (2010)

…
…

Simple 100 ms rate code
(one of many possible codes)

Clue: IT conveys potentially powerful visual features
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neural activity

Biologically plausible hypothesis 
for downstream neural mechanism

But, could this neural code & decode, predict 
behavioral face detection performance?  

“Face present”

and car detection performance?

and car1 vs. car 2?

and all such 
tasks…
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What code & decoding mechanism explains object recognition?

Other possibilities:
Attentional and/or arousal mechanisms are needed to “activate” IT
Trial-by-trial coordinated spike timing patterns are crucial
Compartments within IT must be carefully considered  
(e.g. tasks related to faces handled exclusively by “face patch” network) 

IT does not directly underlie object recognition 

Monkey neuronal codes cannot explain human behavior

Our working hypothesis from previous work:
Passively-evoked spike rate codes (using a single, fixed time scale) that 
are spatially distributed over a single, fixed number of non-
human primate IT cortex neurons and learned from a reasonable 
number of examples.

Performance requires too many training examples 

If correct, this code/decode should predict monkey and human 
reports about object category and object identity for all tasks.
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Our first decoder (based on previous work), with number 
of neurons chosen (once) to match human performance

Majaj, Hong, Solomon, and DiCarlo, Under Review  
Majaj, Hong, Solomon, and DiCarlo, Cosyne 2012
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Our first decoder (based on previous work), with number 
of neurons chosen (once) to match human performance

Take home: simple, learned weighted sums of IT firing rates accurately 
predict the pattern of PERFORMANCE over all object recognition tests 

- for each new object, randomly 
sample ~50,000 single neurons 
spatially distributed over IT 
- “listen” to each IT site’s average 
spiking response (ave over 100 ms) 
- learn an appropriately weighted sum 
of those IT spiking outputs, and then 
use ~10% of them to judge the 
likelihood of the object being present 

Parameters of inferred neural 
code/decoding mechanism: 

“LaWS of RAD IT” 
decoding mechanism

Learned Weighted Sums of (~50,000) 
Random Average (100 ms) single unit 
responses Distributed over IT 

Majaj, Hong, Solomon, and DiCarlo, Under Review  
Majaj, Hong, Solomon, and DiCarlo, Cosyne 2012
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Some controls… 
Most alternative codes/decoding mechanisms are not even close. 
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sums of inferior temporal neuronal firing rates accurately predict human core object recognition
performance." Journal of Neuroscience 35, no. 39 (2015): 13402-13418.
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~500 IT features 

= ~50,000 single IT neurons 
randomly selected over all of IT 

70-170ms 
weighted linear sum (SVM)

LaWS of RAD IT
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Neuroscience 35, no. 39 (2015): 13402-13418.
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Behavioral object 
confusions 
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Actual: 
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LaWS of RAD IT 
decoding 

mechanism

This is an opportunity to push forward:  
image grain predictions to distinguish 
among alternative IT codes
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IT Cortex Contains a General-Purpose Visual Object Representation 
Ha Hong1,2*, Daniel Yamins1*, Najib Majaj1,3, and James J. DiCarlo1    (*equal contribution)  
1Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, MIT, Cambridge MA. 2Harvard-MIT Division 
of Health Sciences and Technology, MIT, Cambridge MA.  3Present address: Center for Neural Science, New York University, New 
York, New York, USA. 
 
Extensive research has shown that Inferior Temporal (IT) cortex is a key brain area underlying invariant 
object recognition.  More recently, it has been uncovered that position is also coded in IT and human LOC.  
Here we show that IT neurons support robust readout of a variety of object parameters that characterize 
scene description in the central visual field. 

We recorded neural responses in IT and V4 to set of 5760 images of photorealistic objects in a variety 
of categories, placed in complex realistic scenes, with significant variation in object position, size, and in-
plane and out-of-plane rotation.  Consistent with known results, IT achieves high invariant categorization and 
identification performance for these images.  We also find that the IT representation object of position is 
highly robust, with units that encode location accurately across the full range of tested positions — even 
across widely varying object geometries, pose and size variation, and cluttered backgrounds that make this 
task very challenging for lower-level visual representations.   We find similarly robust IT encodings for a 
variety of additional object parameters, including size, pose, perimeter, and aspect ratio, for which lower-level 
representations appear to have effectively no decoding power.  While IT exhibits the ability to discount 
identity-preserving variation to solve categorization tasks, it simultaneously encodes a suite of “identity-
orthogonal” dimensions, that, combined with category and object identity encodings, form a basis for a full 
scene description.  

Moreover, while the representation of object identity and category is highly distributed across IT sites, 
the representations for these other properties (e.g. position) is typically more sparsely encoded, with a small 
proportion of highly responsive sites responsible for much of the decoding capacity.  Taken together, these 
results suggest that IT contains a general representation of the visual environment in which key object 
parameters have been extracted and factored.   
!!!!!!!!!!!!!

!!!!!!!!!!!
 

Fig. 1: We measured multi-unit neural responses to briefly presented (RSVP) images from 168 IT and 128 V4 sites in two 
passively fixating macaques using chronically implanted electrode arrays.  We recorded 5760 images of a variety of 
photorealistic 3D objects in each of 8 natural categories.  Objects were shown within the central 8o of the retina on complex 
background scenes at a broad range of position, scale, and pose views.  By choosing different neural decoding rules for 
interpreting IT output, information relevant to a wide variety of natural tasks can be read out from the neurons.  These 
decoding rules are simple weighted sums of neural units.  The sparseness of these weightings corresponds to how distributed 
the task-relevant data is in the neural population.  We assessed performance for a wide variety of tasks including basic-level 
categorization (e.g. animals vs. boats vs. cars etc.) and subordinate-level identification (e.g. face 1 vs. face 2 vs. face 3 etc.), 
as well as continuous-valued tasks like object position, size, pose, and aspect-ratio estimation.  In the categorical cases, we 
used linear classifiers to find the optimal weightings; for the continuous estimation tasks, we used linear regression.!!!!

Faces Fruits

PositionSize / 
Aspect Ratio

Pose

Face 1vs.

Other object latent variables

Category:  plane
Identity:  f16
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LaWS of RAD IT 
decoding mechanism

But these tasks are not all equally difficult for humans.  Does 
this decoding mechanism predict that pattern of difficulty? 

To test this, we collected human performance data on these images/tasks.

Sum:  LaWS of RAD IT performs 
better than other codes/decodes.
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LaWS of RAD IT 
decoding mechanism
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Figure 4: Comparison of neural population decoding performance to human psy-

chophysical measurements. a. Human-relative performance as a function of number of
subsampled sites used to decode the property. The x-axis represents the base-10 logarithm
of the number of sites. For each task, the y-axis represents the performance of the decoder
with the indicated number of sites, as a fraction of median human performance for that task.
(A value of 1 would mean that the neural decoder achieve 100% of human performance level.)
Human performance for each indicated task was measured using large-scale web-based psy-
chophysics (see text and SI). As in Fig. 3, balanced accuracy was used for both neural de-
coders and humans for the categorical properties, while estimate/actual correlation was used
for continuous-valued properties. The variation in human performance between individuals in
our psychophysical studies is indicated by the dotted horizontal lines flanking y = 1 (the me-
dian human performance level). Solid lines represent measured data; dotted lines represent
log-linear extrapolations based on the measured data. We evaluated our measured IT and V4
neural populations out to the data limited 168 and 128 sites respectively, and evaluated V1
model and pixels out to 2000 units. b. Estimated number of neural sites that would be required
to match median human performance. Error bounds are due to variation in site subsamples.
Value is shown as “—” when more than 1010 sites would be required.13
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a. Scatters show human performance (x-axis) versus neural performance (y-axis) for a variety
of tasks. Large squares show the aggregated tasks (n = 14) indicated in Fig. 4b. Small circles
(n = 30) indicate values for further breakdown of the data into subordinate identification and
pose estimation tasks on a per-category basis (see text and SI for details). b. Summary of
data from panel a. Bar height represents Spearmans R correlation between human and neural
decode for the 14 aggregated tasks (top panel) and 44 disaggregated tasks (bottom panel).
Error bars are standard deviations due to be task and image variation (see SI for details).
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chophysical measurements. a. Human-relative performance as a function of number of
subsampled sites used to decode the property. The x-axis represents the base-10 logarithm
of the number of sites. For each task, the y-axis represents the performance of the decoder
with the indicated number of sites, as a fraction of median human performance for that task.
(A value of 1 would mean that the neural decoder achieve 100% of human performance level.)
Human performance for each indicated task was measured using large-scale web-based psy-
chophysics (see text and SI). As in Fig. 3, balanced accuracy was used for both neural de-
coders and humans for the categorical properties, while estimate/actual correlation was used
for continuous-valued properties. The variation in human performance between individuals in
our psychophysical studies is indicated by the dotted horizontal lines flanking y = 1 (the me-
dian human performance level). Solid lines represent measured data; dotted lines represent
log-linear extrapolations based on the measured data. We evaluated our measured IT and V4
neural populations out to the data limited 168 and 128 sites respectively, and evaluated V1
model and pixels out to 2000 units. b. Estimated number of neural sites that would be required
to match median human performance. Error bounds are due to variation in site subsamples.
Value is shown as “—” when more than 1010 sites would be required.13
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LaWS of RAD IT 
decoding mechanism

Summary: This ventral 
stream code/decoding 
mechanism also predicts 
human patterns of 
performance for other 
object latent variables.

Hong, Yamins, Majaj, and DiCarlo, Cosyne 2014  
Hong, Yamins, Majaj, and DiCarlo, (in prep) 

This suggests that:  
- the IT population conveys a 

general purpose object 
representation 

- the job of the ventral stream 
is not to produce category 
“invariant” representations 

Edelman (1998), DiCarlo and Cox (2007), 
Li et al. (2009), etc. 

IT Cortex Contains a General-Purpose Visual Object Representation 
Ha Hong1,2*, Daniel Yamins1*, Najib Majaj1,3, and James J. DiCarlo1    (*equal contribution)  
1Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, MIT, Cambridge MA. 2Harvard-MIT Division 
of Health Sciences and Technology, MIT, Cambridge MA.  3Present address: Center for Neural Science, New York University, New 
York, New York, USA. 
 
Extensive research has shown that Inferior Temporal (IT) cortex is a key brain area underlying invariant 
object recognition.  More recently, it has been uncovered that position is also coded in IT and human LOC.  
Here we show that IT neurons support robust readout of a variety of object parameters that characterize 
scene description in the central visual field. 

We recorded neural responses in IT and V4 to set of 5760 images of photorealistic objects in a variety 
of categories, placed in complex realistic scenes, with significant variation in object position, size, and in-
plane and out-of-plane rotation.  Consistent with known results, IT achieves high invariant categorization and 
identification performance for these images.  We also find that the IT representation object of position is 
highly robust, with units that encode location accurately across the full range of tested positions — even 
across widely varying object geometries, pose and size variation, and cluttered backgrounds that make this 
task very challenging for lower-level visual representations.   We find similarly robust IT encodings for a 
variety of additional object parameters, including size, pose, perimeter, and aspect ratio, for which lower-level 
representations appear to have effectively no decoding power.  While IT exhibits the ability to discount 
identity-preserving variation to solve categorization tasks, it simultaneously encodes a suite of “identity-
orthogonal” dimensions, that, combined with category and object identity encodings, form a basis for a full 
scene description.  

Moreover, while the representation of object identity and category is highly distributed across IT sites, 
the representations for these other properties (e.g. position) is typically more sparsely encoded, with a small 
proportion of highly responsive sites responsible for much of the decoding capacity.  Taken together, these 
results suggest that IT contains a general representation of the visual environment in which key object 
parameters have been extracted and factored.   
!!!!!!!!!!!!!

!!!!!!!!!!!
 

Fig. 1: We measured multi-unit neural responses to briefly presented (RSVP) images from 168 IT and 128 V4 sites in two 
passively fixating macaques using chronically implanted electrode arrays.  We recorded 5760 images of a variety of 
photorealistic 3D objects in each of 8 natural categories.  Objects were shown within the central 8o of the retina on complex 
background scenes at a broad range of position, scale, and pose views.  By choosing different neural decoding rules for 
interpreting IT output, information relevant to a wide variety of natural tasks can be read out from the neurons.  These 
decoding rules are simple weighted sums of neural units.  The sparseness of these weightings corresponds to how distributed 
the task-relevant data is in the neural population.  We assessed performance for a wide variety of tasks including basic-level 
categorization (e.g. animals vs. boats vs. cars etc.) and subordinate-level identification (e.g. face 1 vs. face 2 vs. face 3 etc.), 
as well as continuous-valued tasks like object position, size, pose, and aspect-ratio estimation.  In the categorical cases, we 
used linear classifiers to find the optimal weightings; for the continuous estimation tasks, we used linear regression.!!!!
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Step 1:  (done) Tool building and testing:   Can we reliably disrupt 
performance of a recognition task by directly suppressing the 
activity of ~1mm IT neural sub-populations? 

Causal tests of this model

The model allows us to predict how much any 
object recognition task will be disrupted by direct 
suppression of IT neurons. 

Step 2 (ongoing):  Test a large 
battery of tasks and a battery of 
IT suppression patterns. 

or this bit of cortex…

Silence this bit of cortex

or this bit of cortex…
or this bit 
of cortex…

Post-learning:

IT cortex (AIT + CIT) 

Towards actual 
“inception”
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Monkey task: face gender discrimination

Gender axisMale Female
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We found a spatially-specific behavioral effect 
on this object discrimination task

be
ha

vi
or

al
 a

cc
ur

ac
y * *

(%
 c

or
re

ct
) 

18 sessions 
each 1600 trials 

visual field

Control
Laser on

Trial-by-trial 
interleaved optical 
suppression of ~1 mm 
IT sub-regions

Afraz, Boyden and DiCarlo, SFN (2013), VSS (2014); PNAS (2015)
93



Pharmacological suppression of different IT sub-regions results 
in different patterns of deficit in basic level object tasks

Our current aim is to systematically measure the specific 
pattern of behavioral change induced by suppression of each 
IT sub-region (~100) and compare with model predictions
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Can we span the entire domain of core 
recognition tasks?  How?

Vision Object recognition
“Core object 
recognition”
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Core recognition: only ~20 dimensions needed to characterize 
confusions among all basic and subordinate-level objects
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Third principal component (9.28% variance explained)

F

One important use of this result: for efficient causal testing of 
the entire domain, we can focus on measuring impacts on 
object discrimination tasks that span this space

Axes in this space correspond to human shape adjectives
(subjective magnitude reports)

Ongoing ….
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(Domain: core object recognition)

Goal:  end-to-end understanding
1. Can we infer the decoding mechanism that the brain 
uses to support perceptual reports about visually 
presented object?

Note: this must predict behavioral report and it must 
include a falsifiable statement of the relevant aspects of 
neural activity (aka “neural code”)

2. Can we infer the encoding mechanism(s) that 
accurately predict the relevant ventral stream 
population patterns of neural activity from each image?
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Neural-like basic operations

L2 
L3

a
Basic operations:
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H g

Simple, bio-known 
non-linearities

is convolutional 
(i.e. retinotopy)
has many types of 
tuning functions 

Pinto, Doukan, DiCarlo & Cox, PLoS Comp Biol (2009)

Layer 1 Layer 2 Layer 3

Our goal (2008):  explore a family of possible encoding mechanisms
“Deep convolutional neural networks”  (Deep CNN’s)
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neurobiology)
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parameters 

That model PREDICTS the entire neural population 
response to ANY image, in each successive visual area

Set all parameters —> gives a model

“Deep convolutional neural networks”  (Deep CNN’s)
Our goal (2008):  explore a family of possible encoding mechanisms
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How do we determine which of these models, 
if any, is a model of the ventral stream?

1. Use optimization methods to find specific models  
(i.e. parameter settings) in this model family.

2. Optimization target = visual tasks that we hypothesize 
that the ventral stream evolved and/or developed to solve.

Our goal (2008):  explore a family of possible encoding mechanisms
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Object recognition 1.0

‣ variety of 3D objects (36) with semantic breadth (e.g. not all faces) 
‣ rendered with large amount of variation
‣ These are different objects that those we will use later in testing

2. Optimization target 

Nine example objects:
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Large hypothesis space of encoding algorithms

L3

Θ (3)

...

Φ1

Φ2

Φk

⊗
⊗

⊗

NormalizePoolFilter Threshold &
Saturate

Neural-like basic operations

L2 
L3

a
Basic operations:

L1

Θ (1)

Θ     θ      θ     θ     θ     θ = (  filter ,   thr ,   sat ,   pool ,  norm )

Θ (2) Θ (3)

Hierarchical Stacking

HM0 1.0  
(all parameters 

fixed) 
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IT? 
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Cross-validated 
linear regression
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IT neural site 

Prediction of 
HMO model 

These are PREDICTIONS:  All of these objects and images were 
never previously seen by the HMO model  

Yamins, Hong, Solomon, Seibert (* mean rate 70-170 ms after image onset) and DiCarlo PNAS (2014)  
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b

Predictions of single site IT responses from layer 4 of HMO 1.0 model

Yamins, Hong, Solomon, Seibert 
and DiCarlo PNAS (2014)  
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~50% of IT single unit response variance predicted.
Dramatic improvement over previous models. 

Ability of various encoding mechanisms (specific models) 
to predict IT responses to naturalistic images 

Yamins, Hong, Solomon, Seibert 
and DiCarlo PNAS (2014)  
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Bio-inspired algorithm class + tasks in domain + optimization
    ==> neural-like encoding functions!

Yamins, Hong, Solomon, Seibert 
and DiCarlo PNAS (2014)  

Even in intermediate layers!
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to better 
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predictive 
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(even when other 
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Suggests that continued optimization within this family of 
models would lead to even higher neural predictive power.
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CNN features vs. IT “features”

Li
ne

ar
-S

V
M

K
er

ne
l A

na
ly

si
s

Complexity

Pr
ec

is
io

n
A

cc
ur

ac
y

IT Cortex DNN

Pixel Representation

IT Cortex Representation

DNN Representation

Cars Fruits

b)

Deep Neural 
Network (DNN)

 �(x)

Ventral Stream

Retinae Representation

IT Cortex DNN

IT

  

Evaluation

Cars

...
Planes
Chairs
Tables
Faces

...

a) Fruits

...

Animals

...

115

Cadieu, Charles F., Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J.
Majaj, and James J. DiCarlo. "Deep neural networks rival the representation of primate IT cortex for
core visual object recognition. "PLoS Comput Biol 10, no. 12 (2014): e1003963;
https://doi.org/10.1371/journal.pcbi.1003963. License CC BY.

https://doi.org/10.1371/journal.pcbi.1003963


Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013);   
Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. PLoS Comp Bio (2014)

CNN features vs. IT “features”

Fig. 3. Kernel analysis curves of sample and noise matched neural and model representations. Plotting conventions are the same as in
Fig. 2. Multi-unit analysis is presented in panel A and single-unit analysis in B. Note that the model representations have been modified such that they
are both subsampled and noisy versions of those analyzed in Fig. 2 and this modification is indicated by the { symbol for noise matched to the multi-
unit IT cortex sample and by the { symbol for noise matched to the single-unit IT cortex sample. To correct for sampling bias, the multi-unit analysis
uses 80 samples, either 80 neural multi-units from V4 or IT cortex, or 80 features from the model representations, and the single-unit analysis uses 40
samples. To correct for experimental and intrinsic neural noise, we added noise to the subsampled model representation (no additional noise is
added to the neural representations) that is commensurate to the observed noise from the IT measurements. Note that we observed similar noise
between the V4 and IT Cortex samples and we do not attempt to correct the V4 cortex sample of the noise observed in the IT cortex sample. We
observed substantially higher noise levels in IT single-unit recordings than multi-unit recordings due to both higher trial-to-trial variability and more
trials for the multi-unit recordings. All model representations suffer decreases in accuracy after correcting for sampling and adding noise (compare
absolute precision values to Fig. 2). All three deep neural networks perform significantly better than the V4 cortex sample. For the multi-unit analysis
(A), IT cortex sample achieves high precision and is only matched in performance by the Zeiler & Fergus 2013 representation. For the single-unit
analysis (B), both the Krizhevsky et al. 2012 and the Zeiler & Fergus 2013 representations surpass the IT representational performance.
doi:10.1371/journal.pcbi.1003963.g003

Fig. 4. Effect of sampling the neural and noise-corrected model representations. We measure the area-under-the-curve of the kernel
analysis measurement as we change the number of neural sites (for neural representations), or the number of features (for model representations).
Measured samples are indicated by filled symbols and measured standard deviations indicated by error bars. Multi-unit analysis is shown in panel A
and single-unit analysis in B. The model representations are noise corrected by adding noise that is matched to the IT multi-unit measurements (A, as
indicated by the { symbol) or single-unit measurements (B, as indicated by the { symbol). For the multi-unit analysis, the Zeiler & Fergus 2013
representation rivals the IT cortex representation over our measured sample. For the single-unit analysis, the Krizhevsky et al. 2012 representation
rivals the IT cortex representation for low number of features and slightly surpasses it for higher number of features. The Zeiler & Fergus 2013
representation surpasses the IT cortex representation over our measured sample.
doi:10.1371/journal.pcbi.1003963.g004

DNNs Rival the Representation of IT Cortex for Core Object Recognition

PLOS Computational Biology | www.ploscompbiol.org 6 December 2014 | Volume 10 | Issue 12 | e1003963
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Figure 7. Object-level representational similarity analysis comparing model and neural
representations to the IT multi-unit representation. A) Following the proposed analysis in [32],
the object-level dissimilarity matrix for the IT multi-unit representation is compared to the matrices
computed from the model representations and from the V4 multi-unit representation. Each bar
indicates the similarity between the corresponding representation and the IT multi-unit representation
as measured by the Spearman correlation between dissimilarity matrices. Error bars indicate standard
deviation over 10 splits. The IT Cortex Split-Half bar indicates the deviation measured by comparing
half of the multi-unit sites to the other half, measured over 50 repetitions. The V1-like, V2-like, and
HMAX representations are highly dissimilar to IT cortex. The HMO representation produces
comparable deviations from IT as the V4 multi-unit representation while the Krizhevsky et al. 2012
and Zeiler & Fergus 2013 representations fall in-between the V4 representation and the IT cortex
split-half measurement. The representations with an appended “+ IT-fit” follow the methodology
in [27], which first predicts IT multi-unit responses from the model representation and then uses these
predictions to form a new representation (see text). B) Depictions of the object-level RDMs for select
representations. Each matrix is ordered by object category (animals, cars, chairs, etc.) and scaled
independently (see color bar). For the “+ IT-fit” representations, the feature for each image was
averaged across testing set predictions before computing the RDM (see Methods).

Better performing deep CNN networks also better 
predict the patterns of IT neural responses

Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. ICLR (2013);   
Cadieu CF, Hong H, Yamins D, Pinto N, Majaj N, and DiCarlo JJ. PLoS Comp Bio (2014)
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Summary of what I presented today (Domain: Core recognition)

Inference:  this might be the specific neural code and decoding 
mechanism that the brain uses to support these tasks.  

Inference:  the encoding mechanisms in these models are 
similar to those at work in the ventral stream. 

1. Showed that IT firing rates are a feature basis on which 
learned object judgements naturally predict human/monkey 
performance; defined parameters. LaWS of RAD IT  

[70-170ms, 50,000n, 100t]

This is allowing the field to design experiments to explore what 
remains unique and powerful about primate object perception.

2. Showed that optimization of deep CNNs (models) for invariant 
object recognition tasks led to dramatic improvements in our 
ability to predict IT and V4 neural responses. HMO 1.0, CNN 2.0

Systematic causal tests of this model ongoing, but results 
thus far are as predicted by the model …
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ONGOING AND FUTURE…
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