# RProject8_4_density.r
require(graphics)
set.seed(0)
x=ifelse(runif(100)<.5, rnorm(100) +5,rnorm(100))
# x=ifelse(runif(100)<.5, rgamma(100,shape=3,scale=2),rnorm(100))
# x=ifelse(runif(100)<.5, (rnorm(100) +5)^2,(rnorm(100)^2))
par(mfcol=c(2,2))
x.density1<-density(x,bw="sj")
hist(x,nclass=50,probability=TRUE,
main=paste("Density Estimate (bw='sj')",
"\nN = ", as.character(length(x))," Bandwidth=", as.character(round(x.density1$bw,digits=3)),
collapse=""))
lines(x.density1$x, x.density1$y, col="green")
rug(x)
x.density1<-density(x,bw="nrd0")
hist(x,nclass=50,probability=TRUE,
main=paste("Density Estimate (bw='nrd0')",
"\nN = ", as.character(length(x))," Bandwidth=", as.character(round(x.density1$bw,digits=3)),
collapse=""))
lines(x.density1$x, x.density1$y, col="green")
rug(x)
x.density1<-density(x,bw="nrd0",adjust=.2)
hist(x,nclass=50,probability=TRUE,
main=paste("Density Estimate (bw='nrd0 x .2')",
"\nN = ", as.character(length(x))," Bandwidth=", as.character(round(x.density1$bw,digits=3)),
collapse=""))
lines(x.density1$x, x.density1$y, col="green")
rug(x)
x.density1<-density(x,bw="nrd0",adjust=4.)
hist(x,nclass=50,probability=TRUE,
main=paste("Density Estimate (bw='nrd0 x 4')",
"\nN = ", as.character(length(x))," Bandwidth=", as.character(round(x.density1$bw,digits=3)),
collapse=""))
lines(x.density1$x, x.density1$y, col="green")
rug(x)
![]()
### Alternate Kernels:
par(mfcol=c(1,1))
(kernels <- eval(formals(density.default)$kernel))
## [1] "gaussian" "epanechnikov" "rectangular" "triangular"
## [5] "biweight" "cosine" "optcosine"
## show the kernels in the R parametrization
plot (density(0, bw = 1), xlab = "",
main = "R's density() kernels with bw = 1")
for(i in 2:length(kernels))
lines(density(0, bw = 1, kernel = kernels[i]), col = i)
legend(1.5,.4, legend = kernels, col = seq(kernels),
lty = 1, cex = .8, y.intersp = 1)
![]()
#
stem(x)
##
## The decimal point is at the |
##
## -2 | 9
## -0 | 5411109977665543311110
## 0 | 0002235678990123455789
## 2 | 02436788999
## 4 | 011112222456666789000011112233456777
## 6 | 13335664
args(stem)
## function (x, scale = 1, width = 80, atom = 1e-08)
## NULL
#help(stem)
stem(x,scale=2)
##
## The decimal point is at the |
##
## -2 | 9
## -1 | 541110
## -0 | 9977665543311110
## 0 | 000223567899
## 1 | 0123455789
## 2 | 024
## 3 | 36788999
## 4 | 011112222456666789
## 5 | 000011112233456777
## 6 | 1333566
## 7 | 4
stem(x,scale=3)
##
## The decimal point is at the |
##
## -2 | 9
## -2 |
## -1 | 5
## -1 | 41110
## -0 | 99776655
## -0 | 43311110
## 0 | 000223
## 0 | 567899
## 1 | 01234
## 1 | 55789
## 2 | 024
## 2 |
## 3 | 3
## 3 | 6788999
## 4 | 0111122224
## 4 | 56666789
## 5 | 0000111122334
## 5 | 56777
## 6 | 1333
## 6 | 566
## 7 | 4
boxplot(x)
![]()